Scientific Publications
-
Quantifying Spatiotemporal Greenhouse Gas Emissions Using Autonomous Surface Vehicles
Dunbabin, M., & Grinham, A. (2017). Quantifying Spatiotemporal Greenhouse Gas Emissions Using Autonomous Surface Vehicles. Journal of Field Robotics, 34(1), 151–169. https://doi.org/10.1002/rob.21665
View More -
Advances in Visual Computing
Bebis, G., Boyle, R., Parvin, et al. (2016). Advances in Visual Computing. (Vol. 10072). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-50835-1
View More -
Background Appearance Modeling with Applications to Visual Object Detection in an Open-Pit Mine
Bewley, A., & Upcroft, B. (2017). Background Appearance Modeling with Applications to Visual Object Detection in an Open-Pit Mine. Journal of Field Robotics, 34(1), 53–73. https://doi.org/10.1002/rob.21667
View More -
Computer Vision and Image Understanding (Vol. 146)
Reid, I. (2016). 12th Asian conference on computer vision. Computer Vision and Image Understanding (Vol. 146).
View More -
Robotics Research: The 16th International Symposium ISRR
Inaba, M., & Corke, P. (2016). Robotics research: The 16th international symposium ISRR. In 16th International Symposium of Robotics Research, ISRR 2013 (Vol. 114). Singapore: Springer Verlag. http://doi.org/10.1007/978-3-319-28872-7
View More -
Fast Training of Triplet-based Deep Binary Embedding Networks
Zhuang, B., Lin, G., Shen, C., & Reid, I. (2016). Fast training of triplet-based deep binary embedding networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5955–5964. https://doi.org/10.1109/CVPR.2016.641
View More -
Robust Visual Tracking with Deep Convolutional Neural Network Based Object Proposals on PETS
Zhu, G., Porikli, F., & Li, H. (2016). Robust Visual Tracking with Deep Convolutional Neural Network Based Object Proposals on PETS. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016 (pp. 1265–1272). Las Vegas, Nevada: IEEE Computer Society. http://doi.org/10.1109/CVPRW.2016.160
View More -
Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals
Zhu, G., Porikli, F., & Li, H. (2016). Beyond local search: Tracking objects everywhere with instance-specific proposals. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 943–951. https://doi.org/10.1109/CVPR.2016.108
View More -
Real-time Rotation Estimation for Dense Depth Sensors in Piece-wise Planar Environments
Zhou, Y., Kneip, L., & Li, H. (2016). Real-time rotation estimation for dense depth sensors in piece-wise planar environments. IEEE International Conference on Intelligent Robots and Systems, 2016-November, 2271–2278. https://doi.org/10.1109/IROS.2016.7759355
View More -
Less Is More: Towards Compact CNNs
Zhou H., Alvarez J.M., Porikli F. (2016) Less Is More: Towards Compact CNNs. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9908. Springer, Cham. https://doi.org/10.1007/978-3-319-46493-0_40
View More -
Cluster Sparsity Field for Hyperspectral Imagery Denoising
Zhang L., Wei W., Zhang Y., Shen C., van den Hengel A., Shi Q. (2016) Cluster Sparsity Field for Hyperspectral Imagery Denoising. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9909. Springer, Cham. https://doi.org/10.1007/978-3-319-46454-1_38
View More -
SLNSW-UTS: A Historical Image Dataset for Image Multi-Labeling and Retrieval
Zhang, J., Zhang, J., Lu, J., Shen, C., Curr, K., Phua, R., Neville, R., & Edmonds, E. (2016). SLNSW-UTS: A Historical Image Dataset for Image Multi-Labeling and Retrieval. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–6). Gold Coast, Australia: IEEE. http://doi.org/10.1109/DICTA.2016.7797084
View More -
Vertical Axis Detection for Sport Video Analytics
Zeng, R., Lakemond, R., Denman, S., Sridharan, S., Fookes, C., & Morgan, S. (2016). Vertical Axis Detection for Sport Video Analytics. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–7). IEEE. http://doi.org/10.1109/DICTA.2016.7797093
View More -
Ultra-Resolving Face Images by Discriminative Generative Networks
Yu X., Porikli F. (2016) Ultra-Resolving Face Images by Discriminative Generative Networks. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9909. Springer, Cham. https://doi.org/10.1007/978-3-319-46454-1_20
View More -
Riemannian Sparse Coding for Classification of PolSAR Images
Yang, W., Zhong, N., Yang, X., & Cherian, A. (2016). Riemannian sparse coding for classification of PolSAR images. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5698–5701). Beijing, China: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/IGARSS.2016.7730488
View More -
Robust Optical Flow Estimation of Double-Layer Images under Transparency or Reflection
Yang, J., Li, H., Dai, Y., & Tan, R. T. (2016). Robust optical flow estimation of double-layer images under transparency or reflection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 1410–1419. https://doi.org/10.1109/CVPR.2016.157
View More -
Superpixel-Based Two-View Deterministic Fitting for Multiple-Structure Data
Xiao G., Wang H., Yan Y., Suter D. (2016) Superpixel-Based Two-View Deterministic Fitting for Multiple-Structure Data. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9910. Springer, Cham. https://doi.org/10.1007/978-3-319-46466-4_31
View More -
Ask Me Anything: Free-form Visual Question Answering Based on Knowledge from External Sources
Wu, Q., Wang, P., Shen, C., Dick, A., & Van Den Hengel, A. (2016). Ask me anything: Free-form visual question answering based on knowledge from external sources. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 4622–4630. https://doi.org/10.1109/CVPR.2016.500
View More -
What Value Do Explicit High Level Concepts Have in Vision to Language Problems?
Wu, Q., Shen, C., Liu, L., Dick, A., & Van Den Hengel, A. (2016). What value do explicit high level concepts have in vision to language problems? Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 203–212. https://doi.org/10.1109/CVPR.2016.29
View More -
Towards Hybrid Control of a Flexible Curvilinear Surgical Robot With Visual/Haptic Guidance
Wu, L., Wu, K., & Ren, H. (2016). Towards hybrid control of a flexible curvilinear surgical robot with visual/haptic guidance. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 (pp. 501–507). Daejeon, Korea: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/IROS.2016.7759100
View More -
Iterative Views Agreement: An Iterative Low-Rank based Structured Optimization Method to Multi-View Spectral Clustering
Wang, Y., Wenjie, Z., Wu, L., Lin, X., Fang, M., & Pan, S. (2016). Iterative views agreement: an iterative low-rank based structured optimization method to multi-view spectral clustering (pp. 2153–2159). Association for the Advancement of Artificial Intelligence (AAAI). https://research.monash.edu/en/publications/iterative-views-agreement-an-iterative-low-rank-based-structured-
View More -
Collaborative Multi-Sensor Image Transmission and Data Fusion in Mobile Visual Sensor Networks Equipped with RGB-D Cameras
Wang, X., Ahmet Sekercioglu, Y., Drummond, T., Natalizio, E., Fantoni, I., & Fremont, V. (2016). Collaborative multi-sensor image transmission and data fusion in mobile visual sensor networks equipped with RGB-D cameras. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 0, 1–8. https://doi.org/10.1109/MFI.2016.7849458
View More -
UAV Based Target Finding and Tracking in GPS-Denied and Cluttered Environments
Vanegas, F., Campbell, D., Eich, M., & Gonzalez, F. (2016). UAV based target finding and tracking in GPS-denied and cluttered environments. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 (pp. 2307–2313). Daejeon, South Korea: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/IROS.2016.7759360
View More -
Find my office: Navigating real space from semantic descriptions
Talbot, B., Lam, O., Schulz, R., Dayoub, F., Upcroft, B., & Wyeth, G. (2016). Find my office: Navigating real space from semantic descriptions. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 5782–5787. https://doi.org/10.1109/ICRA.2016.7487802
View More -
Place Categorization and Semantic Mapping on a Mobile Robot
Sunderhauf, N., Dayoub, F., McMahon, S., Talbot, B., Schulz, R., Corke, P., … Milford, M. (2016). Place categorization and semantic mapping on a mobile robot. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5729–5736). IEEE. http://doi.org/10.1109/ICRA.2016.7487796
View More -
Learning Functional Argument Mappings for Hierarchical Tasks from Situation Specific Explanations
Suddrey, G., Eich, M., Maire, F., & Roberts, J. (2016). Learning Functional Argument Mappings for Hierarchical Tasks from Situation Specific Explanations. In AI 2016: Advances in Artificial Intelligence (pp. 345–352). Springer, Cham. http://doi.org/10.1007/978-3-319-50127-7_30
View More -
Towards Robotic Arthroscopy: “Instrument gap” Segmentation
Strydom, M., Jaiprakash, A., Crawford, R., Peynot, T., & Roberts, J. (2016). Towards robotic arthroscopy: “Instrument gap” segmentation. Australasian Conference on Robotics and Automation, ACRA, 2016-December, 248–257.
View More -
Skyline-based Localisation for Aggressively Manoeuvring Robots using UV sensors and Spherical Harmonics
Stone, T., Differt, D., Milford, M., & Webb, B. (2016). Skyline-based localisation for aggressively manoeuvring robots using UV sensors and spherical harmonics. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5615–5622). Stockholm: IEEE. http://doi.org/10.1109/ICRA.2016.7487780
View More -
High-Fidelity Simulation for Evaluating Robotic Vision Performance
Skinner, J., Garg, S., Sunderhauf, N., Corke, P., Upcroft, B., & Milford, M. (2016). High-fidelity simulation for evaluating robotic vision performance. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016. Daejeon, Korea. http://doi.org/10.1109/IROS.2016.7759425
View More -
Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation
Saleh F., Aliakbarian M.S., Salzmann M., Petersson L., Gould S., Alvarez J.M. (2016) Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9912. Springer, Cham. https://doi.org/10.1007/978-3-319-46484-8_25
View More -
Joint Probabilistic Matching Using m-Best Solutions
Rezatofighi, S. H., Milani, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2016). Joint probabilistic matching using m-best solutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 136–145. https://doi.org/10.1109/CVPR.2016.22
View More -
Less is More: Zero-Shot Learning from Online Textual Documents with Noise Suppression
Qiao, R., Liu, L., Shen, C., & Hengel, A. Van Den. (2016). Less is More: Zero-Shot Learning from Online Textual Documents with Noise Suppression. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 2249–2257. https://doi.org/10.1109/CVPR.2016.247
View More -
Design and fabrication of a disposable micro end effector for concentric tube robots
Prasai, A. B., Jaiprakash, A., Pandey, A. K., Crawford, R., Roberts, J., & Wu, L. (2016). Design and fabrication of a disposable micro end effector for concentric tube robots. 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016. https://doi.org/10.1109/ICARCV.2016.7838560
View More -
3D Reconstruction Quality Analysis and Its Acceleration on GPU Clusters
Polok, L., Ila, V., & Smrz, P. (2016). 3D reconstruction quality analysis and its acceleration on GPU clusters. In European Signal Processing Conference (EUSIPCO) (Vol. 2016–Novem, pp. 1108–1112). Budapest, Hungary. http://doi.org/10.1109/EUSIPCO.2016.7760420
View More -
Efficient Point Process Inference for Large-scale Object Detection
Pham, T. T., Rezatofighi, S. H., Reid, I., & Chin, T. J. (2016). Efficient Point Process Inference for Large-Scale Object Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 2837–2845. https://doi.org/10.1109/CVPR.2016.310
View More -
Geometrically Consistent Plane Extraction for Dense Indoor 3D Maps Segmentation
Pham, T. T., Eich, M., Reid, I., & Wyeth, G. (2016). Geometrically consistent plane extraction for dense indoor 3D maps segmentation. IEEE International Conference on Intelligent Robots and Systems, 2016-November, 4199–4204. https://doi.org/10.1109/IROS.2016.7759618
View More -
Deeper and Wider Fully Convolutional Network Coupled with Conditional Random Fields for Scene Labeling
Nguyen, K., Fookes, C., & Sridharan, S. (2016). Deeper and wider fully convolutional network coupled with conditional random fields for scene labeling. Proceedings - International Conference on Image Processing, ICIP, 2016-August, 1344–1348. https://doi.org/10.1109/ICIP.2016.7532577
View More -
3D Scanning System for Automatic High-Resolution Plant Phenotyping
Nguyen, C. V., Fripp, J., Lovell, D. R., Furbank, R., Kuffner, P., Daily, H., & Sirault, X. (2016). 3D Scanning System for Automatic High-Resolution Plant Phenotyping. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–8). Gold Coast, Queensland: IEEE. http://doi.org/10.1109/DICTA.2016.7796984
View More -
Non-Iterative, Fast SE(3) Path Smoothing
Ng, Y., Jiang, B., Yu, C., & Li, H. (2016). Non-iterative, fast SE(3) path smoothing. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 (pp. 3172–3179). Daejeon, Korea: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/IROS.2016.7759490
View More -
Latent Structural SVM with Marginal Probabilities for Weakly Labeled Structured Learning
*Namin, S. R., Alvarez, J. M., Kneip, L., & Petersson, L. (2016). Latent structural SVM with marginal probabilities for weakly labeled structured learning. In 23rd IEEE International Conference on Image Processing, ICIP 2016 (pp. 3733–3737). Phoenix, United States: IEEE Computer Society.
View More -
2D Visual Place Recognition for Domestic Service Robots at Night
Mount, J., & Milford, M. (2016). 2D visual place recognition for domestic service robots at night. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 4822–4829. https://doi.org/10.1109/ICRA.2016.7487686
View More -
Visual Detection of Occluded Crop: for automated harvesting
McCool, C., Sa, I., Dayoub, F., Lehnert, C., Perez, T., & Upcroft, B. (2016). Visual detection of occluded crop: For automated harvesting. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 2506–2512. https://doi.org/10.1109/ICRA.2016.7487405
View More -
Underwater Image Descattering and Quality Assessment
Lu, H., Li, Y., Xu, X., He, L., Li, Y., Dansereau, D., & Serikawa, S. (2016). Underwater image descattering and quality assessment. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 1998–2002). IEEE. http://doi.org/10.1109/ICIP.2016.7532708
View More -
Learning Image Matching by Simply Watching Video
Long G., Kneip L., Alvarez J.M., Li H., Zhang X., Yu Q. (2016) Learning Image Matching by Simply Watching Video. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9910. Springer, Cham. https://doi.org/10.1007/978-3-319-46466-4_26
View More -
Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation
Lin, G., Shen, C., Hengel, A. Van Den, & Reid, I. (2016). Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 3194–3203. https://doi.org/10.1109/CVPR.2016.348
View More -
Recent Advances in Camera Planning for Large Area Surveillance
Liu, J., Sridharan, S., & Fookes, C. (2016). Recent Advances in Camera Planning for Large Area Surveillance. ACM Computing Surveys, 49(1), 1–37. http://doi.org/10.1145/2906148
View More -
On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units
Liao, Z., & Carneiro, G. (2016). On the importance of normalisation layers in deep learning with piecewise linear activation units. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1–8). IEEE. http://doi.org/10.1109/WACV.2016.7477624
View More -
Design and Flight Testing of a Bio-Inspired Plume Tracking Algorithm for Unmanned Aerial Vehicles
Letheren, B., Montes, G., Villa, T., & Gonzalez, F. (2016). Design and flight testing of a bio-inspired plume tracking algorithm for unmanned aerial vehicles. IEEE Aerospace Conference Proceedings, 2016-June. https://doi.org/10.1109/AERO.2016.7500614
View More -
LunaRoo: Designing a Hopping Lunar Science Payload
Leitner, J., Chamberlain, W., Dansereau, D. G., Dunbabin, M., Eich, M., Peynot, T., … Sunderhauf, N. (2016). LunaRoo: Designing a hopping lunar science payload. In 2016 IEEE Aerospace Conference (pp. 1–12). IEEE. http://doi.org/10.1109/AERO.2016.7500760
View More -
Sweet Pepper Pose Detection and Grasping for Automated Crop Harvesting
Lehnert, C., Sa, I., McCool, C., Upcroft, B., & Perez, T. (2016). Sweet pepper pose detection and grasping for automated crop harvesting. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 2428–2434. https://doi.org/10.1109/ICRA.2016.7487394
View More -
Conformal Surface Alignment With Optimal Mobius Search
Le, H., Chin, T. J., & Suter, D. (2016). Conformal Surface Alignment with Optimal Möbius Search. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 2507–2516. https://doi.org/10.1109/CVPR.2016.275
View More -
Multi-body non-rigid structure-from-motion
Kumar, S., Dai, Y., & Li, H. (2016). Multi-body non-rigid structure-from-motion. In Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016 (pp. 148–156). Stanford, United States: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/3DV.2016.23
View More -
Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimising Global Loss Functions
Kumar, B. G. V., Carneiro, G., & Reid, I. (2016). Learning local image descriptors with deep siamese and triplet convolutional networks by minimizing global loss functions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5385–5394. https://doi.org/10.1109/CVPR.2016.581
View More -
Tensor Representations via Kernel Linearization for Action Recognition from 3D Skeletons
Koniusz P., Cherian A., Porikli F. (2016) Tensor Representations via Kernel Linearization for Action Recognition from 3D Skeletons. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9908. Springer, Cham. https://doi.org/10.1007/978-3-319-46493-0_3
View More -
Sparse Coding for Third-order Super-symmetric Tensor Descriptors with Application to Texture Recognition
Koniusz, P., & Cherian, A. (2016). Sparse coding for third-order super-symmetric tensor descriptors with application to texture recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5395–5403. https://doi.org/10.1109/CVPR.2016.582
View More -
The Generalized Relative Pose and Scale Problem: View-Graph Fusion via 2D-2D Registration
Kneip, L., Sweeney, C., & Hartley, R. (2016). The generalized relative pose and scale problem: View-graph fusion via 2D-2D registration. In IEEE Winter Conference on Applications of Computer Vision, WACV 2016. Lake Placid, United States: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/WACV.2016.7477656
View More -
Direct Semi-dense SLAM for Rolling Shutter Cameras
Kim, J. H., Cadena, C., & Reid, I. (2016). Direct semi-dense SLAM for rolling shutter cameras. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 1308–1315. https://doi.org/10.1109/ICRA.2016.7487263
View More -
Deep Convolutional Neural Networks for Human Embryonic Cell Counting
Khan A., Gould S., Salzmann M. (2016) Deep Convolutional Neural Networks for Human Embryonic Cell Counting. In: Hua G., Jégou H. (eds) Computer Vision – ECCV 2016 Workshops. ECCV 2016. Lecture Notes in Computer Science, vol 9913. Springer, Cham. https://doi.org/10.1007/978-3-319-46604-0_25
View More -
Unmanned Aerial Surveillance System for Hazard Collision Avoidance in Autonomous Shipping
Johansen, T. A., & Perez, T. (2016). Unmanned aerial surveillance system for hazard collision avoidance in autonomous shipping. In 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1056–1065). IEEE. http://doi.org/10.1109/ICUAS.2016.7502542
View More -
Robust Multi-body Feature Tracker: A Segmentation-free Approach
Ji, P., Li, H., Salzmann, M., & Zhong, Y. (2016). Robust Multi-Body Feature Tracker: A Segmentation-Free Approach. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 3843–3851. https://doi.org/10.1109/CVPR.2016.417
View More -
Haptics-Aided Path Planning and Virtual Fixture Based Dynamic Kinesthetic Boundary for Bilateral Teleoperation of VTOL Aerial Robots
Hou, X., Wang, X., & Mahony, R. (2016). Haptics-aided path planning and virtual fixture based dynamic kinesthetic boundary for bilateral teleoperation of VTOL aerial robots. Chinese Control Conference, CCC, 2016-August, 4705–4710. https://doi.org/10.1109/ChiCC.2016.7554082
View More -
Adaptive spatial filtering for off-axis digital holographic microscopy based on region recognition approach with iterative thresholding
He, X., Nguyen, C. V., Pratap, M., Zheng, Y., Wang, Y., Nisbet, D. R., Rug, M., Maier, A. G., & Lee, W. M. (2016). Adaptive spatial filtering for off-axis digital holographic microscopy based on region recognition approach with iterative thresholding. In M. R. Hutchinson & E. M. Goldys (Eds.), SPIE BioPhotonics Australasia (Vol. 10013, p. 1001329). SPIE. https://doi.org/10.1117/12.2242876
View More -
FANNG: Fast Approximate Nearest Neighbour Graphs
Harwood, B., & Drummond, T. (2016). FANNG: Fast approximate nearest neighbour graphs. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5713–5722. https://doi.org/10.1109/CVPR.2016.616
View More -
Discovery of Facial Motions using Deep Machine Perception
Ghasemi, A., Denman, S., Sridharan, S., & Fookes, C. (2016, May 23). Discovery of facial motions using deep machine perception. 2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016. https://doi.org/10.1109/WACV.2016.7477448
View More -
Exploiting Temporal Information for DCNN-based Fine-Grained Object Classification
Ge, Z., McCool, C., Sanderson, C., Wang, P., Liu, L., Reid, I., & Corke, P. (2016). Exploiting Temporal Information for DCNN-based Fine-Grained Object Classification. In Digital Image Computing: Techniques and Applications (DICTA). Gold Coast, Queensland. http://doi.org/10.1109/DICTA.2016.7797039
View More -
Fine-Grained Classification via Mixture of Deep Convolutional Neural Networks
Ge, Z., Bewley, A., McCool, C., Corke, P., Upcroft, B., & Sanderson, C. (2016). Fine-grained classification via mixture of deep convolutional neural networks. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1–6). IEEE. http://doi.org/10.1109/WACV.2016.7477700
View More -
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue
Garg R., B.G. V.K., Carneiro G., Reid I. (2016) Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9912. Springer, Cham. https://doi.org/10.1007/978-3-319-46484-8_45
View More -
Automated Plant and Leaf Separation: Application in 3D Meshes of Wheat Plants
Frolov, K., Fripp, J., Nguyen, C. V., Furbank, R., Bull, G., Kuffner, P., … Sirault, X. (2016). Automated Plant and Leaf Separation: Application in 3D Meshes of Wheat Plants. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–7). Gold Coast, Queensland: IEEE. http://doi.org/10.1109/DICTA.2016.7797011
View More -
Discriminative Hierarchical Rank Pooling for Activity Recognition
Fernando, B., Anderson, P., Hutter, M., & Gould, S. (2016). Discriminative Hierarchical Rank Pooling for Activity Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 1924–1932. https://doi.org/10.1109/CVPR.2016.212
View More -
A Consensus-Based Framework for Distributed Bundle Adjustment
Eriksson, A., Bastian, J., Chin, T. J., & Isaksson, M. (2016). A Consensus-Based Framework for Distributed Bundle Adjustment. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 1754–1762. https://doi.org/10.1109/CVPR.2016.194
View More -
Autonomous Greenhouse Gas Sampling Using Multiple Robotic Boats
Dunbabin, M. (2016). Autonomous greenhouse gas sampling using multiple robotic boats. In 10th International Conference on Field and Service Robotics, FSR 2015 (Vol. 113, pp. 17–30). Toronto, Canada: Springer Verlag. http://doi.org/10.1007/978-3-319-27702-8_2
View More -
Reliable Scale Estimation and Correction for Monocular Visual Odometry
Dingfu Zhou, Dai, Y., & Hongdong Li. (2016). Reliable scale estimation and correction for monocular Visual Odometry. In 2016 IEEE Intelligent Vehicles Symposium (IV) (pp. 490–495). Gothenburg, Sweden: IEEE. http://doi.org/10.1109/IVS.2016.7535431
View More -
MO-SLAM: Multi Object SLAM with Run-Time Object Discovery through Duplicates
Dharmasiri, T., Lui, V., & Drummond, T. (2016). MO-SLAM: Multi object SLAM with run-time object discovery through duplicates - IEEE Xplore Document. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016. Daejeon, Korea. http://doi.org/10.1109/IROS.2016.7759203
View More -
Output Regulation on the Special Euclidean Group SE(3)
De Marco, S., Marconi, L., Hamel, T., & Mahony, R. (2016). Output regulation on the Special Euclidean Group SE(3). 2016 IEEE 55th Conference on Decision and Control, CDC 2016, 4734–4739. https://doi.org/10.1109/CDC.2016.7798991
View More -
Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry
Dai, Y., Li, H., & Kneip, L. (2016). Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 4132–4140. https://doi.org/10.1109/CVPR.2016.448
View More -
Simultaneous Correspondences Estimation and Non-Rigid Structure Reconstruction
Dai, Y., & Li, H. (2016). Simultaneous Correspondences Estimation and Non-Rigid Structure Reconstruction. In 2016 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2016. Gold Coast, Queensland: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/DICTA.2016.7797083
View More -
Guaranteed Outlier Removal With Mixed Integer Linear Programs
Chin, T. J., Kee, Y. H., Eriksson, A., & Neumann, F. (2016). Guaranteed outlier removal with mixed integer linear programs. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5858–5866. https://doi.org/10.1109/CVPR.2016.631
View More -
A Distributed Robotic Vision Service
Chamberlain, W., Leitner, J., Drummond, T., & Corke, P. (2016). A distributed robotic vision service. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 2494–2499. https://doi.org/10.1109/ICRA.2016.7487403
View More -
Dynamic Image Networks for Action Recognition
Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., & Gould, S. (2016). Dynamic Image Networks for Action Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 3034–3042. https://doi.org/10.1109/CVPR.2016.331
View More -
ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains
Bewley, A., Ott, L., Ramos, F., & Upcroft, B. (2016). Alextrac: Affinity learning by exploring temporal reinforcement within association chains. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2212–2218). Stockholm, Sweden: IEEE. http://doi.org/10.1109/ICRA.2016.7487371
View More -
Simple Online and Realtime Tracking
Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 3464–3468). IEEE. http://doi.org/10.1109/ICIP.2016.7533003
View More -
SPICE: Semantic Propositional Image Caption Evaluation
Anderson P., Fernando B., Johnson M., Gould S. (2016) SPICE: Semantic Propositional Image Caption Evaluation. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9909. Springer, Cham. https://doi.org/10.1007/978-3-319-46454-1_24
View More -
Velocity Aided Attitude Estimation for Aerial Robotic Vehicles Using Latent Rotation Scaling
Allibert, G., Mahony, R., & Bangura, M. (2016). Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 1538–1543. https://doi.org/10.1109/ICRA.2016.7487291
View More -
Complex Event Detection using Joint Max Margin and Semantic Features
Abbasnejad, I., Sridharan, S., Denman, S., Fookes, C., & Lucey, S. (2016, December 22). Complex Event Detection Using Joint Max Margin and Semantic Features. 2016 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2016. https://doi.org/10.1109/DICTA.2016.7797023
View More -
Dictionary Learning for Promoting Structured Sparsity in Hyprspectral Compressive Sensing
Zhang, L., Wei, W., Zhang, Y., Shen, C., Van Den Hengel, A., & Shi, Q. (2016). Dictionary Learning for Promoting Structured Sparsity in Hyperspectral Compressive Sensing. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7223–7235. https://doi.org/10.1109/TGRS.2016.2598577
View More -
Unsupervised Feature Learning for Dense Correspondences Across Scenes
Zhang, C., Shen, C., & Shen, T. (2016). Unsupervised Feature Learning for Dense Correspondences Across Scenes. International Journal of Computer Vision, 116(1), 90–107. https://doi.org/10.1007/s11263-015-0829-6
View More -
Development of a Multi-Channel Concentric Tube Robotic System With Active Vision for Transnasal Nasopharyngeal Carcinoma Procedures
Yu, H., Wu, L., Wu, K., & Ren, H. (2016). Development of a Multi-Channel Concentric Tube Robotic System with Active Vision for Transnasal Nasopharyngeal Carcinoma Procedures. IEEE Robotics and Automation Letters, 1(2), 1172–1178. https://doi.org/10.1109/LRA.2016.2530794
View More -
Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration
Yang, J., Li, H., Campbell, D., & Jia, Y. (2016). Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2241–2254. http://doi.org/10.1109/TPAMI.2015.2513405
View More -
Detecting Rare Events Using Kullback–Leibler Divergence: A Weakly Supervised Approach
Xu, J., Denman, S., Fookes, C., & Sridharan, S. (2016). Detecting rare events using Kullback–Leibler divergence: A weakly supervised approach. Expert Systems with Applications, 54, 13–28. http://doi.org/10.1016/j.eswa.2016.01.035
View More -
Hypergraph Modelling for Geometric Model Fitting
Xiao, G., Wang, H., Lai, T., & Suter, D. (2016). Hypergraph modelling for geometric model fitting. Pattern Recognition, 60, 748–760. https://doi.org/10.1016/j.patcog.2016.06.026
View More -
Simultaneous Hand–Eye, Tool–Flange, and Robot–Robot Calibration for Comanipulation by Solving the AXB = YCZ Problem
Wu, L., Wang, J., Qi, L., Wu, K., Ren, H., & Meng, M. Q. H. (2016). Simultaneous Hand-Eye, Tool-Flange, and Robot-Robot Calibration for Comanipulation by Solving the AXB = YCZ Problem. IEEE Transactions on Robotics, 32(2), 413–428. https://doi.org/10.1109/TRO.2016.2530079
View More -
Fast Depth Video Compression for Mobile RGB-D Sensors
Wang, X., Şekercioǧlu, Y. A., Drummond, T., Natalizio, E., Fantoni, I., & Frémont, V. (2016). Fast Depth Video Compression for Mobile RGB-D Sensors. IEEE Transactions on Circuits and Systems for Video Technology, 26(4), 673–686. https://doi.org/10.1109/TCSVT.2015.2416571
View More -
Correspondence Driven Saliency Transfer
Wang, W., Shen, J., Shao, L., & Porikli, F. (2016). Correspondence Driven Saliency Transfer. IEEE Transactions on Image Processing, 25(11), 5025–5034. http://doi.org/10.1109/TIP.2016.2601784
View More -
Robust Model Fitting Using Higher Than Minimal Subset Sampling
Tennakoon, R. B., Bab-Hadiashar, A., Cao, Z., Hoseinnezhad, R., & Suter, D. (2016). Robust Model Fitting Using Higher Than Minimal Subset Sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 350–362. https://doi.org/10.1109/TPAMI.2015.2448103
View More -
Teaching Robots Generalizable Hierarchical Tasks Through Natural Language Instruction
Suddrey, G., Lehnert, C., Eich, M., Maire, F., & Roberts, J. (2016). Teaching Robots Generalisable Hierarchical Tasks Through Natural Language Instruction. IEEE Robotics and Automation Letters, 2(1), 201–208. http://doi.org/10.1109/LRA.2016.2588584
View More -
Unlocking Neural Complexity with a Robotic Key
Stratton, P., Hasselmo, M., & Milford, M. (2016). Unlocking neural complexity with a robotic key. The Journal of Physiology, 594(22), 6559–6567. http://doi.org/10.1113/JP271444
View More -
A Passivity-Based Approach to Formation Control Using Partial Measurements of Relative Position
Stacey, G., & Mahony, R. (2016). A Passivity-Based Approach to Formation Control Using Partial Measurements of Relative Position. IEEE Transactions on Automatic Control, 61(2), 538–543. https://doi.org/10.1109/TAC.2015.2446811
View More -
Distributed Formation Control of Networked Mobile Robots in Environments with Obstacles
Seng, W. L., Barca, J. C., Şekercioğlu, Y. A., & Ahmet Ekercio˘ Glu, Y. (2016). Distributed formation control of networked mobile robots in environments with obstacles. Robotica Robotica Robotica, 34(34), 1403–1415. http://doi.org/10.1017/S0263574714002380
View More -
Strategies for Pre-Emptive Mid-Air Collision Avoidance in Budgerigars
Schiffner, I., Perez, T., Srinivasan, M. V., Angelov, P., Padian, K., Chiappe, L., … Wyndham, E. (2016). Strategies for Pre-Emptive Mid-Air Collision Avoidance in Budgerigars. PLOS ONE, 11(9), e0162435. http://doi.org/10.1371/journal.pone.0162435
View More -
Deep Learning for Automatic Detection and Classification of Microaneurysms, Hard and Soft Exudates, and Hemorrhages for Diabetic Retinopathy Diagnosis
Saha, S. K., Fernando, B., Xiao, D., Tay-Kearney, M.-L., & Kanagasingam, Y. (2016). Deep Learning for Automatic Detection and Classification of Microaneurysms, Hard and Soft Exudates, and Hemorrhages for Diabetic Retinopathy Diagnosis. Investigative Ophthalmology & Visual Science, 57(12), pp.5962–5962.
View More -
A Flexible Hierarchical Approach For Facial Age Estimation Based on Multiple Features
Pontes, J. K., Britto, A. S., Fookes, C., & Koerich, A. L. (2016). A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recognition, 54, 34–51. http://doi.org/10.1016/j.patcog.2015.12.003
View More -
Routed Roads: Probabilistic Vision-Based Place Recognition for Changing Conditions, Split Streets and Varied Viewpoints
Pepperell, E., Corke, P., & Milford, M. (2016). Routed roads: Probabilistic vision-based place recognition for changing conditions, split streets and varied viewpoints. The International Journal of Robotics Research, 35(9), 1057–1079. http://doi.org/10.1177/0278364915618766
View More -
Fast Rotation Search with Stereographic Projections for 3D Registration
Parra Bustos, A., Chin, T.-J., Eriksson, A., Li, H., & Suter, D. (2016). Fast Rotation Search with Stereographic Projections for 3D Registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2227–2240. http://doi.org/10.1109/TPAMI.2016.2517636
View More -
Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning
Paisitkriangkrai, S., Shen, C., & Hengel, A. van den. (2016). Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(6), 1243–1257. http://doi.org/10.1109/TPAMI.2015.2474388
View More -
RatSLAM: Using Models of Rodent Hippocampus for Robot Navigation and Beyond
Milford M., Jacobson A., Chen Z., Wyeth G. (2016) RatSLAM: Using Models of Rodent Hippocampus for Robot Navigation and Beyond. In: Inaba M., Corke P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_27
View More -
Visual Tracking Under Motion Blur
Ma, B., Huang, L., Shen, J., Shao, L., Yang, M.-H., & Porikli, F. (2016). Visual Tracking Under Motion Blur. IEEE Transactions on Image Processing, 25(12), 5867–5876. http://doi.org/10.1109/TIP.2016.2615812
View More -
Supervised and Unsupervised Linear Learning Techniques for Visual Place Recognition in Changing Environments
Lowry, S., & Milford, M. J. (2016). Supervised and Unsupervised Linear Learning Techniques for Visual Place Recognition in Changing Environments. IEEE Transactions on Robotics, 32(3), 600–613. http://doi.org/10.1109/TRO.2016.2545711
View More -
A Generalized Probabilistic Framework for Compact Codebook Creation
Liu, L., Wang, L., & Shen, C. (2016). A Generalized Probabilistic Framework for Compact Codebook Creation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 224–237. https://doi.org/10.1109/TPAMI.2015.2441069
View More -
Online Unsupervised Feature Learning for Visual Tracking
Liu, F., Shen, C., Reid, I., & van den Hengel, A. (2016). Online unsupervised feature learning for visual tracking. Image and Vision Computing, 51(July), 84–94. http://doi.org/10.1016/j.imavis.2016.04.008
View More -
Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields
Liu, F., Shen, C., Lin, G., & Reid, I. (2016). Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(10), 2024–2039. http://doi.org/10.1109/TPAMI.2015.2505283
View More -
Online Metric-Weighted Linear Representations for Robust Visual Tracking
Li, X., Shen, C., Dick, A., Zhang, Z. M., & Zhuang, Y. (2016). Online Metric-Weighted Linear Representations for Robust Visual Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(5), 931–950. http://doi.org/10.1109/TPAMI.2015.2469276
View More -
Convolutional Neural Net Bagging for Online Visual Tracking
Li, H., Li, Y., & Porikli, F. (2016). Convolutional neural net bagging for online visual tracking. Computer Vision and Image Understanding, 153(December 2016), 120–129. http://doi.org/10.1016/j.cviu.2016.07.002
View More -
A Novel Performance Evaluation Methodology for Single-Target Trackers
Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R., Fernandez, G., … Cehovin, L. (2016). A Novel Performance Evaluation Methodology for Single-Target Trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2137–2155. http://doi.org/10.1109/TPAMI.2016.2516982
View More -
State Estimation for Invariant Systems on Lie Groups with Delayed Output Measurements
Khosravian, A., Trumpf, J., Mahony, R., & Hamel, T. (2016). State estimation for invariant systems on Lie groups with delayed output measurements. Automatica, 68, 254–265. https://doi.org/10.1016/j.automatica.2016.01.024
View More -
Fast Detection of Multiple Objects in Traffic Scenes with a Common Detection Framework
Hu, Q., Paisitkriangkrai, S., Shen, C., van den Hengel, A., & Porikli, F. (2016). Fast Detection of Multiple Objects in Traffic Scenes With a Common Detection Framework. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1002–1014. http://doi.org/10.1109/TITS.2015.2496795
View More -
Dynamic Kinesthetic Boundary for Haptic Teleoperation of VTOL Aerial Robots in Complex Environments
Hou, X., & Mahony, R. (2016). Dynamic kinesthetic boundary for haptic teleoperation of VTOL aerial robots in complex environments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(5), 694–705. https://doi.org/10.1109/TSMC.2015.2478756
View More -
Automated Fourier Space Region-Recognition Filtering for Off-Axis Digital Holographic Microscopy
He, X., Nguyen, C. V., Pratap, M., Zheng, Y., Wang, Y., Nisbet, D. R., Williams, R. J., Rug, M., Maier, A. G & Lee, W. M. (2016). Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy. Biomedical Optics Express, 7(8), 3111. http://doi.org/10.1364/BOE.7.003111
View More -
Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences
Harandi, M. T., Hartley, R., Lovell, B., & Sanderson, C. (2016). Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences. IEEE Transactions on Neural Networks and Learning Systems, 27(6), 1294–1306. https://doi.org/10.1109/TNNLS.2014.2387383
View More -
Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking
Grubman, T., Şekercioğlu, Y. A., & Wood, D. R. (2016). Partitioning de Bruijn graphs into fixed-length cycles for robot identification and tracking. Discrete Applied Mathematics, 213, 101–113. https://doi.org/10.1016/j.dam.2016.05.013
View More -
Quantifying Multiscale Habitat Structural Complexity: A Cost-Effective Framework for Underwater 3D Modelling
Ferrari, R., McKinnon, D., He, H., Smith, R., Corke, P., González-Rivero, M., … Upcroft, B. (2016). Quantifying Multiscale Habitat Structural Complexity: A Cost-Effective Framework for Underwater 3D Modelling. Remote Sensing, 8(2), 113. http://doi.org/10.3390/rs8020113
View More -
Simple Change Detection from Mobile Light Field Cameras
Dansereau, D. G., Williams, S. B., & Corke, P. I. (2016). Simple change detection from mobile light field cameras. Computer Vision and Image Understanding, 145(April), 160–171. http://doi.org/10.1016/j.cviu.2015.12.008
View More -
Bayesian Nonparametric Clustering for Positive Definite Matrices
Cherian, A., Morellas, V., & Papanikolopoulos, N. (2016). Bayesian Nonparametric Clustering for Positive Definite Matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(5), 862–874. https://doi.org/10.1109/TPAMI.2015.2456903
View More -
Measuring the Performance of Single Image Depth Estimation Methods
Cadena, C., Latif, Y., & Reid, I. D. (2016). Measuring the performance of single image depth estimation methods. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4150–4157). Daejeon, Korea: IEEE. http://doi.org/10.1109/IROS.2016.7759611
View More -
Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., … Leonard, J. J. (2016). Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332. http://doi.org/10.1109/TRO.2016.2624754
View More -
Discovering Team Structures in Soccer from Spatiotemporal Data
Bialkowski, A., Lucey, P., Carr, P., Matthews, I., Sridharan, S., & Fookes, C. (2016). Discovering Team Structures in Soccer from Spatiotemporal Data. IEEE Transactions on Knowledge and Data Engineering, 28(10), 2596–2605. http://doi.org/10.1109/TKDE.2016.2581158
View More -
A Filter Formulation for Computing Real Time Optical Flow
Adarve, J. D., & Mahony, R. (2016). A Filter Formulation for Computing Real Time Optical Flow. IEEE Robotics and Automation Letters, 1(2), 1192–1199. http://doi.org/10.1109/LRA.2016.2532928
View More -
DeepFruits: A Fruit Detection System Using Deep Neural Networks
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors, 16(8), 1222. http://doi.org/10.3390/s16081222
View More -
Contour Completion Without Region Segmentation
Ming, Y., Li, H., & He, X. (2016). Contour Completion Without Region Segmentation. IEEE Transactions on Image Processing, 25(8), 3597–3611. http://doi.org/10.1109/TIP.2016.2564646
View More -
A Modular Software Framework for Eye–Hand Coordination in Humanoid Robots
Leitner, J., Harding, S., Förster, A., & Corke, P. (2016). A Modular Software Framework for Eye–Hand Coordination in Humanoid Robots. Frontiers in Robotics and AI, 3, 26. http://doi.org/10.3389/frobt.2016.00026
View More -
From ImageNet to Mining: Adapting Visual Object Detection with Minimal Supervision
Bewley A., Upcroft B. (2016) From ImageNet to Mining: Adapting Visual Object Detection with Minimal Supervision. In: Wettergreen D., Barfoot T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_33
View More -
Visual Place Recognition: A Survey
Lowry, S., Sunderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., & Milford, M. J. (2016). Visual Place Recognition: A Survey. IEEE Transactions on Robotics, 32(1), 1–19. http://doi.org/10.1109/TRO.2015.2496823
View More -
Long-range stereo visual odometry for extended altitude flight of unmanned aerial vehicles
Warren, M., Corke, P., & Upcroft, B. (2016). Long-range stereo visual odometry for extended altitude flight of unmanned aerial vehicles. The International Journal of Robotics Research, 35(4), 381–403. http://doi.org/10.1177/0278364915581194
View More -
General, Nested, and Constrained Wiberg Minimization
Strelow, D., Wang, Q., Si, L., & Eriksson, A. (2016). General, nested, and constrained Wiberg minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(9), 1803–1815. https://doi.org/10.1109/TPAMI.2015.2487987
View More -
Vision-based Obstacle Detection and Navigation for an Agricultural Robot
Ball, D., Upcroft, B., Wyeth, G., Corke, P., English, A., Ross, P., Petten, T., Fitch, R., Sukkarieh, S., & Bate, A. (2016). Vision-based Obstacle Detection and Navigation for an Agricultural Robot. Journal of Field Robotics, 33(8), 1107–1130. http://doi.org/10.1002/rob.21644
View More -
Robotics Competitions and Challenges
Nardi, D., Roberts, J., Veloso, M., & Fletcher, L. (2016). Robotics competitions and challenges. In Springer Handbook of Robotics (pp. 1759–1783). Springer International Publishing. https://doi.org/10.1007/978-3-319-32552-1_66
View More -
Modeling and Control of Aerial Robots
Mahony, R., Beard, R. W., & Kumar, V. (2016). Modeling and control of aerial robots. In Springer Handbook of Robotics (pp. 1307–1333). Springer International Publishing. https://doi.org/10.1007/978-3-319-32552-1_52
View More -
Visual Servoing
Chaumette, F., Hutchinson, S., & Corke, P. (2016). Visual Servoing. In Springer Handbook of Robotics (pp. 841–866). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-32552-1_34
View More
Book Chapters
-
RatSLAM: Using Models of Rodent Hippocampus for Robot Navigation and Beyond
Milford M., Jacobson A., Chen Z., Wyeth G. (2016) RatSLAM: Using Models of Rodent Hippocampus for Robot Navigation and Beyond. In: Inaba M., Corke P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_27
View More -
From ImageNet to Mining: Adapting Visual Object Detection with Minimal Supervision
Bewley A., Upcroft B. (2016) From ImageNet to Mining: Adapting Visual Object Detection with Minimal Supervision. In: Wettergreen D., Barfoot T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_33
View More -
Robotics Competitions and Challenges
Nardi, D., Roberts, J., Veloso, M., & Fletcher, L. (2016). Robotics competitions and challenges. In Springer Handbook of Robotics (pp. 1759–1783). Springer International Publishing. https://doi.org/10.1007/978-3-319-32552-1_66
View More -
Modeling and Control of Aerial Robots
Mahony, R., Beard, R. W., & Kumar, V. (2016). Modeling and control of aerial robots. In Springer Handbook of Robotics (pp. 1307–1333). Springer International Publishing. https://doi.org/10.1007/978-3-319-32552-1_52
View More -
Visual Servoing
Chaumette, F., Hutchinson, S., & Corke, P. (2016). Visual Servoing. In Springer Handbook of Robotics (pp. 841–866). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-32552-1_34
View More
Journal Articles
-
Quantifying Spatiotemporal Greenhouse Gas Emissions Using Autonomous Surface Vehicles
Dunbabin, M., & Grinham, A. (2017). Quantifying Spatiotemporal Greenhouse Gas Emissions Using Autonomous Surface Vehicles. Journal of Field Robotics, 34(1), 151–169. https://doi.org/10.1002/rob.21665
View More -
Background Appearance Modeling with Applications to Visual Object Detection in an Open-Pit Mine
Bewley, A., & Upcroft, B. (2017). Background Appearance Modeling with Applications to Visual Object Detection in an Open-Pit Mine. Journal of Field Robotics, 34(1), 53–73. https://doi.org/10.1002/rob.21667
View More -
Recent Advances in Camera Planning for Large Area Surveillance
Liu, J., Sridharan, S., & Fookes, C. (2016). Recent Advances in Camera Planning for Large Area Surveillance. ACM Computing Surveys, 49(1), 1–37. http://doi.org/10.1145/2906148
View More -
Dictionary Learning for Promoting Structured Sparsity in Hyprspectral Compressive Sensing
Zhang, L., Wei, W., Zhang, Y., Shen, C., Van Den Hengel, A., & Shi, Q. (2016). Dictionary Learning for Promoting Structured Sparsity in Hyperspectral Compressive Sensing. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7223–7235. https://doi.org/10.1109/TGRS.2016.2598577
View More -
Unsupervised Feature Learning for Dense Correspondences Across Scenes
Zhang, C., Shen, C., & Shen, T. (2016). Unsupervised Feature Learning for Dense Correspondences Across Scenes. International Journal of Computer Vision, 116(1), 90–107. https://doi.org/10.1007/s11263-015-0829-6
View More -
Development of a Multi-Channel Concentric Tube Robotic System With Active Vision for Transnasal Nasopharyngeal Carcinoma Procedures
Yu, H., Wu, L., Wu, K., & Ren, H. (2016). Development of a Multi-Channel Concentric Tube Robotic System with Active Vision for Transnasal Nasopharyngeal Carcinoma Procedures. IEEE Robotics and Automation Letters, 1(2), 1172–1178. https://doi.org/10.1109/LRA.2016.2530794
View More -
Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration
Yang, J., Li, H., Campbell, D., & Jia, Y. (2016). Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2241–2254. http://doi.org/10.1109/TPAMI.2015.2513405
View More -
Detecting Rare Events Using Kullback–Leibler Divergence: A Weakly Supervised Approach
Xu, J., Denman, S., Fookes, C., & Sridharan, S. (2016). Detecting rare events using Kullback–Leibler divergence: A weakly supervised approach. Expert Systems with Applications, 54, 13–28. http://doi.org/10.1016/j.eswa.2016.01.035
View More -
Hypergraph Modelling for Geometric Model Fitting
Xiao, G., Wang, H., Lai, T., & Suter, D. (2016). Hypergraph modelling for geometric model fitting. Pattern Recognition, 60, 748–760. https://doi.org/10.1016/j.patcog.2016.06.026
View More -
Simultaneous Hand–Eye, Tool–Flange, and Robot–Robot Calibration for Comanipulation by Solving the AXB = YCZ Problem
Wu, L., Wang, J., Qi, L., Wu, K., Ren, H., & Meng, M. Q. H. (2016). Simultaneous Hand-Eye, Tool-Flange, and Robot-Robot Calibration for Comanipulation by Solving the AXB = YCZ Problem. IEEE Transactions on Robotics, 32(2), 413–428. https://doi.org/10.1109/TRO.2016.2530079
View More -
Fast Depth Video Compression for Mobile RGB-D Sensors
Wang, X., Şekercioǧlu, Y. A., Drummond, T., Natalizio, E., Fantoni, I., & Frémont, V. (2016). Fast Depth Video Compression for Mobile RGB-D Sensors. IEEE Transactions on Circuits and Systems for Video Technology, 26(4), 673–686. https://doi.org/10.1109/TCSVT.2015.2416571
View More -
Correspondence Driven Saliency Transfer
Wang, W., Shen, J., Shao, L., & Porikli, F. (2016). Correspondence Driven Saliency Transfer. IEEE Transactions on Image Processing, 25(11), 5025–5034. http://doi.org/10.1109/TIP.2016.2601784
View More -
Robust Model Fitting Using Higher Than Minimal Subset Sampling
Tennakoon, R. B., Bab-Hadiashar, A., Cao, Z., Hoseinnezhad, R., & Suter, D. (2016). Robust Model Fitting Using Higher Than Minimal Subset Sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 350–362. https://doi.org/10.1109/TPAMI.2015.2448103
View More -
Teaching Robots Generalizable Hierarchical Tasks Through Natural Language Instruction
Suddrey, G., Lehnert, C., Eich, M., Maire, F., & Roberts, J. (2016). Teaching Robots Generalisable Hierarchical Tasks Through Natural Language Instruction. IEEE Robotics and Automation Letters, 2(1), 201–208. http://doi.org/10.1109/LRA.2016.2588584
View More -
Unlocking Neural Complexity with a Robotic Key
Stratton, P., Hasselmo, M., & Milford, M. (2016). Unlocking neural complexity with a robotic key. The Journal of Physiology, 594(22), 6559–6567. http://doi.org/10.1113/JP271444
View More -
A Passivity-Based Approach to Formation Control Using Partial Measurements of Relative Position
Stacey, G., & Mahony, R. (2016). A Passivity-Based Approach to Formation Control Using Partial Measurements of Relative Position. IEEE Transactions on Automatic Control, 61(2), 538–543. https://doi.org/10.1109/TAC.2015.2446811
View More -
Distributed Formation Control of Networked Mobile Robots in Environments with Obstacles
Seng, W. L., Barca, J. C., Şekercioğlu, Y. A., & Ahmet Ekercio˘ Glu, Y. (2016). Distributed formation control of networked mobile robots in environments with obstacles. Robotica Robotica Robotica, 34(34), 1403–1415. http://doi.org/10.1017/S0263574714002380
View More -
Strategies for Pre-Emptive Mid-Air Collision Avoidance in Budgerigars
Schiffner, I., Perez, T., Srinivasan, M. V., Angelov, P., Padian, K., Chiappe, L., … Wyndham, E. (2016). Strategies for Pre-Emptive Mid-Air Collision Avoidance in Budgerigars. PLOS ONE, 11(9), e0162435. http://doi.org/10.1371/journal.pone.0162435
View More -
Deep Learning for Automatic Detection and Classification of Microaneurysms, Hard and Soft Exudates, and Hemorrhages for Diabetic Retinopathy Diagnosis
Saha, S. K., Fernando, B., Xiao, D., Tay-Kearney, M.-L., & Kanagasingam, Y. (2016). Deep Learning for Automatic Detection and Classification of Microaneurysms, Hard and Soft Exudates, and Hemorrhages for Diabetic Retinopathy Diagnosis. Investigative Ophthalmology & Visual Science, 57(12), pp.5962–5962.
View More -
A Flexible Hierarchical Approach For Facial Age Estimation Based on Multiple Features
Pontes, J. K., Britto, A. S., Fookes, C., & Koerich, A. L. (2016). A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recognition, 54, 34–51. http://doi.org/10.1016/j.patcog.2015.12.003
View More -
Routed Roads: Probabilistic Vision-Based Place Recognition for Changing Conditions, Split Streets and Varied Viewpoints
Pepperell, E., Corke, P., & Milford, M. (2016). Routed roads: Probabilistic vision-based place recognition for changing conditions, split streets and varied viewpoints. The International Journal of Robotics Research, 35(9), 1057–1079. http://doi.org/10.1177/0278364915618766
View More -
Fast Rotation Search with Stereographic Projections for 3D Registration
Parra Bustos, A., Chin, T.-J., Eriksson, A., Li, H., & Suter, D. (2016). Fast Rotation Search with Stereographic Projections for 3D Registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2227–2240. http://doi.org/10.1109/TPAMI.2016.2517636
View More -
Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning
Paisitkriangkrai, S., Shen, C., & Hengel, A. van den. (2016). Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(6), 1243–1257. http://doi.org/10.1109/TPAMI.2015.2474388
View More -
Visual Tracking Under Motion Blur
Ma, B., Huang, L., Shen, J., Shao, L., Yang, M.-H., & Porikli, F. (2016). Visual Tracking Under Motion Blur. IEEE Transactions on Image Processing, 25(12), 5867–5876. http://doi.org/10.1109/TIP.2016.2615812
View More -
Supervised and Unsupervised Linear Learning Techniques for Visual Place Recognition in Changing Environments
Lowry, S., & Milford, M. J. (2016). Supervised and Unsupervised Linear Learning Techniques for Visual Place Recognition in Changing Environments. IEEE Transactions on Robotics, 32(3), 600–613. http://doi.org/10.1109/TRO.2016.2545711
View More -
A Generalized Probabilistic Framework for Compact Codebook Creation
Liu, L., Wang, L., & Shen, C. (2016). A Generalized Probabilistic Framework for Compact Codebook Creation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 224–237. https://doi.org/10.1109/TPAMI.2015.2441069
View More -
Online Unsupervised Feature Learning for Visual Tracking
Liu, F., Shen, C., Reid, I., & van den Hengel, A. (2016). Online unsupervised feature learning for visual tracking. Image and Vision Computing, 51(July), 84–94. http://doi.org/10.1016/j.imavis.2016.04.008
View More -
Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields
Liu, F., Shen, C., Lin, G., & Reid, I. (2016). Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(10), 2024–2039. http://doi.org/10.1109/TPAMI.2015.2505283
View More -
Online Metric-Weighted Linear Representations for Robust Visual Tracking
Li, X., Shen, C., Dick, A., Zhang, Z. M., & Zhuang, Y. (2016). Online Metric-Weighted Linear Representations for Robust Visual Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(5), 931–950. http://doi.org/10.1109/TPAMI.2015.2469276
View More -
Convolutional Neural Net Bagging for Online Visual Tracking
Li, H., Li, Y., & Porikli, F. (2016). Convolutional neural net bagging for online visual tracking. Computer Vision and Image Understanding, 153(December 2016), 120–129. http://doi.org/10.1016/j.cviu.2016.07.002
View More -
A Novel Performance Evaluation Methodology for Single-Target Trackers
Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R., Fernandez, G., … Cehovin, L. (2016). A Novel Performance Evaluation Methodology for Single-Target Trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2137–2155. http://doi.org/10.1109/TPAMI.2016.2516982
View More -
State Estimation for Invariant Systems on Lie Groups with Delayed Output Measurements
Khosravian, A., Trumpf, J., Mahony, R., & Hamel, T. (2016). State estimation for invariant systems on Lie groups with delayed output measurements. Automatica, 68, 254–265. https://doi.org/10.1016/j.automatica.2016.01.024
View More -
Fast Detection of Multiple Objects in Traffic Scenes with a Common Detection Framework
Hu, Q., Paisitkriangkrai, S., Shen, C., van den Hengel, A., & Porikli, F. (2016). Fast Detection of Multiple Objects in Traffic Scenes With a Common Detection Framework. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1002–1014. http://doi.org/10.1109/TITS.2015.2496795
View More -
Dynamic Kinesthetic Boundary for Haptic Teleoperation of VTOL Aerial Robots in Complex Environments
Hou, X., & Mahony, R. (2016). Dynamic kinesthetic boundary for haptic teleoperation of VTOL aerial robots in complex environments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(5), 694–705. https://doi.org/10.1109/TSMC.2015.2478756
View More -
Automated Fourier Space Region-Recognition Filtering for Off-Axis Digital Holographic Microscopy
He, X., Nguyen, C. V., Pratap, M., Zheng, Y., Wang, Y., Nisbet, D. R., Williams, R. J., Rug, M., Maier, A. G & Lee, W. M. (2016). Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy. Biomedical Optics Express, 7(8), 3111. http://doi.org/10.1364/BOE.7.003111
View More -
Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences
Harandi, M. T., Hartley, R., Lovell, B., & Sanderson, C. (2016). Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences. IEEE Transactions on Neural Networks and Learning Systems, 27(6), 1294–1306. https://doi.org/10.1109/TNNLS.2014.2387383
View More -
Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking
Grubman, T., Şekercioğlu, Y. A., & Wood, D. R. (2016). Partitioning de Bruijn graphs into fixed-length cycles for robot identification and tracking. Discrete Applied Mathematics, 213, 101–113. https://doi.org/10.1016/j.dam.2016.05.013
View More -
Quantifying Multiscale Habitat Structural Complexity: A Cost-Effective Framework for Underwater 3D Modelling
Ferrari, R., McKinnon, D., He, H., Smith, R., Corke, P., González-Rivero, M., … Upcroft, B. (2016). Quantifying Multiscale Habitat Structural Complexity: A Cost-Effective Framework for Underwater 3D Modelling. Remote Sensing, 8(2), 113. http://doi.org/10.3390/rs8020113
View More -
Simple Change Detection from Mobile Light Field Cameras
Dansereau, D. G., Williams, S. B., & Corke, P. I. (2016). Simple change detection from mobile light field cameras. Computer Vision and Image Understanding, 145(April), 160–171. http://doi.org/10.1016/j.cviu.2015.12.008
View More -
Bayesian Nonparametric Clustering for Positive Definite Matrices
Cherian, A., Morellas, V., & Papanikolopoulos, N. (2016). Bayesian Nonparametric Clustering for Positive Definite Matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(5), 862–874. https://doi.org/10.1109/TPAMI.2015.2456903
View More -
Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., … Leonard, J. J. (2016). Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), 1309–1332. http://doi.org/10.1109/TRO.2016.2624754
View More -
Discovering Team Structures in Soccer from Spatiotemporal Data
Bialkowski, A., Lucey, P., Carr, P., Matthews, I., Sridharan, S., & Fookes, C. (2016). Discovering Team Structures in Soccer from Spatiotemporal Data. IEEE Transactions on Knowledge and Data Engineering, 28(10), 2596–2605. http://doi.org/10.1109/TKDE.2016.2581158
View More -
A Filter Formulation for Computing Real Time Optical Flow
Adarve, J. D., & Mahony, R. (2016). A Filter Formulation for Computing Real Time Optical Flow. IEEE Robotics and Automation Letters, 1(2), 1192–1199. http://doi.org/10.1109/LRA.2016.2532928
View More -
DeepFruits: A Fruit Detection System Using Deep Neural Networks
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors, 16(8), 1222. http://doi.org/10.3390/s16081222
View More -
Contour Completion Without Region Segmentation
Ming, Y., Li, H., & He, X. (2016). Contour Completion Without Region Segmentation. IEEE Transactions on Image Processing, 25(8), 3597–3611. http://doi.org/10.1109/TIP.2016.2564646
View More -
A Modular Software Framework for Eye–Hand Coordination in Humanoid Robots
Leitner, J., Harding, S., Förster, A., & Corke, P. (2016). A Modular Software Framework for Eye–Hand Coordination in Humanoid Robots. Frontiers in Robotics and AI, 3, 26. http://doi.org/10.3389/frobt.2016.00026
View More -
Visual Place Recognition: A Survey
Lowry, S., Sunderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., & Milford, M. J. (2016). Visual Place Recognition: A Survey. IEEE Transactions on Robotics, 32(1), 1–19. http://doi.org/10.1109/TRO.2015.2496823
View More -
Long-range stereo visual odometry for extended altitude flight of unmanned aerial vehicles
Warren, M., Corke, P., & Upcroft, B. (2016). Long-range stereo visual odometry for extended altitude flight of unmanned aerial vehicles. The International Journal of Robotics Research, 35(4), 381–403. http://doi.org/10.1177/0278364915581194
View More -
General, Nested, and Constrained Wiberg Minimization
Strelow, D., Wang, Q., Si, L., & Eriksson, A. (2016). General, nested, and constrained Wiberg minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(9), 1803–1815. https://doi.org/10.1109/TPAMI.2015.2487987
View More -
Vision-based Obstacle Detection and Navigation for an Agricultural Robot
Ball, D., Upcroft, B., Wyeth, G., Corke, P., English, A., Ross, P., Petten, T., Fitch, R., Sukkarieh, S., & Bate, A. (2016). Vision-based Obstacle Detection and Navigation for an Agricultural Robot. Journal of Field Robotics, 33(8), 1107–1130. http://doi.org/10.1002/rob.21644
View More
Conference Papers
-
Fast Training of Triplet-based Deep Binary Embedding Networks
Zhuang, B., Lin, G., Shen, C., & Reid, I. (2016). Fast training of triplet-based deep binary embedding networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5955–5964. https://doi.org/10.1109/CVPR.2016.641
View More -
Robust Visual Tracking with Deep Convolutional Neural Network Based Object Proposals on PETS
Zhu, G., Porikli, F., & Li, H. (2016). Robust Visual Tracking with Deep Convolutional Neural Network Based Object Proposals on PETS. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016 (pp. 1265–1272). Las Vegas, Nevada: IEEE Computer Society. http://doi.org/10.1109/CVPRW.2016.160
View More -
Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals
Zhu, G., Porikli, F., & Li, H. (2016). Beyond local search: Tracking objects everywhere with instance-specific proposals. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 943–951. https://doi.org/10.1109/CVPR.2016.108
View More -
Real-time Rotation Estimation for Dense Depth Sensors in Piece-wise Planar Environments
Zhou, Y., Kneip, L., & Li, H. (2016). Real-time rotation estimation for dense depth sensors in piece-wise planar environments. IEEE International Conference on Intelligent Robots and Systems, 2016-November, 2271–2278. https://doi.org/10.1109/IROS.2016.7759355
View More -
Less Is More: Towards Compact CNNs
Zhou H., Alvarez J.M., Porikli F. (2016) Less Is More: Towards Compact CNNs. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9908. Springer, Cham. https://doi.org/10.1007/978-3-319-46493-0_40
View More -
Cluster Sparsity Field for Hyperspectral Imagery Denoising
Zhang L., Wei W., Zhang Y., Shen C., van den Hengel A., Shi Q. (2016) Cluster Sparsity Field for Hyperspectral Imagery Denoising. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9909. Springer, Cham. https://doi.org/10.1007/978-3-319-46454-1_38
View More -
SLNSW-UTS: A Historical Image Dataset for Image Multi-Labeling and Retrieval
Zhang, J., Zhang, J., Lu, J., Shen, C., Curr, K., Phua, R., Neville, R., & Edmonds, E. (2016). SLNSW-UTS: A Historical Image Dataset for Image Multi-Labeling and Retrieval. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–6). Gold Coast, Australia: IEEE. http://doi.org/10.1109/DICTA.2016.7797084
View More -
Vertical Axis Detection for Sport Video Analytics
Zeng, R., Lakemond, R., Denman, S., Sridharan, S., Fookes, C., & Morgan, S. (2016). Vertical Axis Detection for Sport Video Analytics. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–7). IEEE. http://doi.org/10.1109/DICTA.2016.7797093
View More -
Ultra-Resolving Face Images by Discriminative Generative Networks
Yu X., Porikli F. (2016) Ultra-Resolving Face Images by Discriminative Generative Networks. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9909. Springer, Cham. https://doi.org/10.1007/978-3-319-46454-1_20
View More -
Riemannian Sparse Coding for Classification of PolSAR Images
Yang, W., Zhong, N., Yang, X., & Cherian, A. (2016). Riemannian sparse coding for classification of PolSAR images. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5698–5701). Beijing, China: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/IGARSS.2016.7730488
View More -
Robust Optical Flow Estimation of Double-Layer Images under Transparency or Reflection
Yang, J., Li, H., Dai, Y., & Tan, R. T. (2016). Robust optical flow estimation of double-layer images under transparency or reflection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 1410–1419. https://doi.org/10.1109/CVPR.2016.157
View More -
Superpixel-Based Two-View Deterministic Fitting for Multiple-Structure Data
Xiao G., Wang H., Yan Y., Suter D. (2016) Superpixel-Based Two-View Deterministic Fitting for Multiple-Structure Data. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9910. Springer, Cham. https://doi.org/10.1007/978-3-319-46466-4_31
View More -
Ask Me Anything: Free-form Visual Question Answering Based on Knowledge from External Sources
Wu, Q., Wang, P., Shen, C., Dick, A., & Van Den Hengel, A. (2016). Ask me anything: Free-form visual question answering based on knowledge from external sources. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 4622–4630. https://doi.org/10.1109/CVPR.2016.500
View More -
What Value Do Explicit High Level Concepts Have in Vision to Language Problems?
Wu, Q., Shen, C., Liu, L., Dick, A., & Van Den Hengel, A. (2016). What value do explicit high level concepts have in vision to language problems? Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 203–212. https://doi.org/10.1109/CVPR.2016.29
View More -
Towards Hybrid Control of a Flexible Curvilinear Surgical Robot With Visual/Haptic Guidance
Wu, L., Wu, K., & Ren, H. (2016). Towards hybrid control of a flexible curvilinear surgical robot with visual/haptic guidance. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 (pp. 501–507). Daejeon, Korea: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/IROS.2016.7759100
View More -
Iterative Views Agreement: An Iterative Low-Rank based Structured Optimization Method to Multi-View Spectral Clustering
Wang, Y., Wenjie, Z., Wu, L., Lin, X., Fang, M., & Pan, S. (2016). Iterative views agreement: an iterative low-rank based structured optimization method to multi-view spectral clustering (pp. 2153–2159). Association for the Advancement of Artificial Intelligence (AAAI). https://research.monash.edu/en/publications/iterative-views-agreement-an-iterative-low-rank-based-structured-
View More -
Collaborative Multi-Sensor Image Transmission and Data Fusion in Mobile Visual Sensor Networks Equipped with RGB-D Cameras
Wang, X., Ahmet Sekercioglu, Y., Drummond, T., Natalizio, E., Fantoni, I., & Fremont, V. (2016). Collaborative multi-sensor image transmission and data fusion in mobile visual sensor networks equipped with RGB-D cameras. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 0, 1–8. https://doi.org/10.1109/MFI.2016.7849458
View More -
UAV Based Target Finding and Tracking in GPS-Denied and Cluttered Environments
Vanegas, F., Campbell, D., Eich, M., & Gonzalez, F. (2016). UAV based target finding and tracking in GPS-denied and cluttered environments. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 (pp. 2307–2313). Daejeon, South Korea: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/IROS.2016.7759360
View More -
Find my office: Navigating real space from semantic descriptions
Talbot, B., Lam, O., Schulz, R., Dayoub, F., Upcroft, B., & Wyeth, G. (2016). Find my office: Navigating real space from semantic descriptions. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 5782–5787. https://doi.org/10.1109/ICRA.2016.7487802
View More -
Place Categorization and Semantic Mapping on a Mobile Robot
Sunderhauf, N., Dayoub, F., McMahon, S., Talbot, B., Schulz, R., Corke, P., … Milford, M. (2016). Place categorization and semantic mapping on a mobile robot. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5729–5736). IEEE. http://doi.org/10.1109/ICRA.2016.7487796
View More -
Learning Functional Argument Mappings for Hierarchical Tasks from Situation Specific Explanations
Suddrey, G., Eich, M., Maire, F., & Roberts, J. (2016). Learning Functional Argument Mappings for Hierarchical Tasks from Situation Specific Explanations. In AI 2016: Advances in Artificial Intelligence (pp. 345–352). Springer, Cham. http://doi.org/10.1007/978-3-319-50127-7_30
View More -
Towards Robotic Arthroscopy: “Instrument gap” Segmentation
Strydom, M., Jaiprakash, A., Crawford, R., Peynot, T., & Roberts, J. (2016). Towards robotic arthroscopy: “Instrument gap” segmentation. Australasian Conference on Robotics and Automation, ACRA, 2016-December, 248–257.
View More -
Skyline-based Localisation for Aggressively Manoeuvring Robots using UV sensors and Spherical Harmonics
Stone, T., Differt, D., Milford, M., & Webb, B. (2016). Skyline-based localisation for aggressively manoeuvring robots using UV sensors and spherical harmonics. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5615–5622). Stockholm: IEEE. http://doi.org/10.1109/ICRA.2016.7487780
View More -
High-Fidelity Simulation for Evaluating Robotic Vision Performance
Skinner, J., Garg, S., Sunderhauf, N., Corke, P., Upcroft, B., & Milford, M. (2016). High-fidelity simulation for evaluating robotic vision performance. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016. Daejeon, Korea. http://doi.org/10.1109/IROS.2016.7759425
View More -
Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation
Saleh F., Aliakbarian M.S., Salzmann M., Petersson L., Gould S., Alvarez J.M. (2016) Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9912. Springer, Cham. https://doi.org/10.1007/978-3-319-46484-8_25
View More -
Joint Probabilistic Matching Using m-Best Solutions
Rezatofighi, S. H., Milani, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2016). Joint probabilistic matching using m-best solutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 136–145. https://doi.org/10.1109/CVPR.2016.22
View More -
Less is More: Zero-Shot Learning from Online Textual Documents with Noise Suppression
Qiao, R., Liu, L., Shen, C., & Hengel, A. Van Den. (2016). Less is More: Zero-Shot Learning from Online Textual Documents with Noise Suppression. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 2249–2257. https://doi.org/10.1109/CVPR.2016.247
View More -
Design and fabrication of a disposable micro end effector for concentric tube robots
Prasai, A. B., Jaiprakash, A., Pandey, A. K., Crawford, R., Roberts, J., & Wu, L. (2016). Design and fabrication of a disposable micro end effector for concentric tube robots. 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016. https://doi.org/10.1109/ICARCV.2016.7838560
View More -
3D Reconstruction Quality Analysis and Its Acceleration on GPU Clusters
Polok, L., Ila, V., & Smrz, P. (2016). 3D reconstruction quality analysis and its acceleration on GPU clusters. In European Signal Processing Conference (EUSIPCO) (Vol. 2016–Novem, pp. 1108–1112). Budapest, Hungary. http://doi.org/10.1109/EUSIPCO.2016.7760420
View More -
Efficient Point Process Inference for Large-scale Object Detection
Pham, T. T., Rezatofighi, S. H., Reid, I., & Chin, T. J. (2016). Efficient Point Process Inference for Large-Scale Object Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 2837–2845. https://doi.org/10.1109/CVPR.2016.310
View More -
Geometrically Consistent Plane Extraction for Dense Indoor 3D Maps Segmentation
Pham, T. T., Eich, M., Reid, I., & Wyeth, G. (2016). Geometrically consistent plane extraction for dense indoor 3D maps segmentation. IEEE International Conference on Intelligent Robots and Systems, 2016-November, 4199–4204. https://doi.org/10.1109/IROS.2016.7759618
View More -
Deeper and Wider Fully Convolutional Network Coupled with Conditional Random Fields for Scene Labeling
Nguyen, K., Fookes, C., & Sridharan, S. (2016). Deeper and wider fully convolutional network coupled with conditional random fields for scene labeling. Proceedings - International Conference on Image Processing, ICIP, 2016-August, 1344–1348. https://doi.org/10.1109/ICIP.2016.7532577
View More -
3D Scanning System for Automatic High-Resolution Plant Phenotyping
Nguyen, C. V., Fripp, J., Lovell, D. R., Furbank, R., Kuffner, P., Daily, H., & Sirault, X. (2016). 3D Scanning System for Automatic High-Resolution Plant Phenotyping. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–8). Gold Coast, Queensland: IEEE. http://doi.org/10.1109/DICTA.2016.7796984
View More -
Non-Iterative, Fast SE(3) Path Smoothing
Ng, Y., Jiang, B., Yu, C., & Li, H. (2016). Non-iterative, fast SE(3) path smoothing. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 (pp. 3172–3179). Daejeon, Korea: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/IROS.2016.7759490
View More -
Latent Structural SVM with Marginal Probabilities for Weakly Labeled Structured Learning
*Namin, S. R., Alvarez, J. M., Kneip, L., & Petersson, L. (2016). Latent structural SVM with marginal probabilities for weakly labeled structured learning. In 23rd IEEE International Conference on Image Processing, ICIP 2016 (pp. 3733–3737). Phoenix, United States: IEEE Computer Society.
View More -
2D Visual Place Recognition for Domestic Service Robots at Night
Mount, J., & Milford, M. (2016). 2D visual place recognition for domestic service robots at night. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 4822–4829. https://doi.org/10.1109/ICRA.2016.7487686
View More -
Visual Detection of Occluded Crop: for automated harvesting
McCool, C., Sa, I., Dayoub, F., Lehnert, C., Perez, T., & Upcroft, B. (2016). Visual detection of occluded crop: For automated harvesting. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 2506–2512. https://doi.org/10.1109/ICRA.2016.7487405
View More -
Underwater Image Descattering and Quality Assessment
Lu, H., Li, Y., Xu, X., He, L., Li, Y., Dansereau, D., & Serikawa, S. (2016). Underwater image descattering and quality assessment. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 1998–2002). IEEE. http://doi.org/10.1109/ICIP.2016.7532708
View More -
Learning Image Matching by Simply Watching Video
Long G., Kneip L., Alvarez J.M., Li H., Zhang X., Yu Q. (2016) Learning Image Matching by Simply Watching Video. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9910. Springer, Cham. https://doi.org/10.1007/978-3-319-46466-4_26
View More -
Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation
Lin, G., Shen, C., Hengel, A. Van Den, & Reid, I. (2016). Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 3194–3203. https://doi.org/10.1109/CVPR.2016.348
View More -
On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units
Liao, Z., & Carneiro, G. (2016). On the importance of normalisation layers in deep learning with piecewise linear activation units. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1–8). IEEE. http://doi.org/10.1109/WACV.2016.7477624
View More -
Design and Flight Testing of a Bio-Inspired Plume Tracking Algorithm for Unmanned Aerial Vehicles
Letheren, B., Montes, G., Villa, T., & Gonzalez, F. (2016). Design and flight testing of a bio-inspired plume tracking algorithm for unmanned aerial vehicles. IEEE Aerospace Conference Proceedings, 2016-June. https://doi.org/10.1109/AERO.2016.7500614
View More -
LunaRoo: Designing a Hopping Lunar Science Payload
Leitner, J., Chamberlain, W., Dansereau, D. G., Dunbabin, M., Eich, M., Peynot, T., … Sunderhauf, N. (2016). LunaRoo: Designing a hopping lunar science payload. In 2016 IEEE Aerospace Conference (pp. 1–12). IEEE. http://doi.org/10.1109/AERO.2016.7500760
View More -
Sweet Pepper Pose Detection and Grasping for Automated Crop Harvesting
Lehnert, C., Sa, I., McCool, C., Upcroft, B., & Perez, T. (2016). Sweet pepper pose detection and grasping for automated crop harvesting. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 2428–2434. https://doi.org/10.1109/ICRA.2016.7487394
View More -
Conformal Surface Alignment With Optimal Mobius Search
Le, H., Chin, T. J., & Suter, D. (2016). Conformal Surface Alignment with Optimal Möbius Search. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 2507–2516. https://doi.org/10.1109/CVPR.2016.275
View More -
Multi-body non-rigid structure-from-motion
Kumar, S., Dai, Y., & Li, H. (2016). Multi-body non-rigid structure-from-motion. In Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016 (pp. 148–156). Stanford, United States: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/3DV.2016.23
View More -
Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimising Global Loss Functions
Kumar, B. G. V., Carneiro, G., & Reid, I. (2016). Learning local image descriptors with deep siamese and triplet convolutional networks by minimizing global loss functions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5385–5394. https://doi.org/10.1109/CVPR.2016.581
View More -
Tensor Representations via Kernel Linearization for Action Recognition from 3D Skeletons
Koniusz P., Cherian A., Porikli F. (2016) Tensor Representations via Kernel Linearization for Action Recognition from 3D Skeletons. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9908. Springer, Cham. https://doi.org/10.1007/978-3-319-46493-0_3
View More -
Sparse Coding for Third-order Super-symmetric Tensor Descriptors with Application to Texture Recognition
Koniusz, P., & Cherian, A. (2016). Sparse coding for third-order super-symmetric tensor descriptors with application to texture recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5395–5403. https://doi.org/10.1109/CVPR.2016.582
View More -
The Generalized Relative Pose and Scale Problem: View-Graph Fusion via 2D-2D Registration
Kneip, L., Sweeney, C., & Hartley, R. (2016). The generalized relative pose and scale problem: View-graph fusion via 2D-2D registration. In IEEE Winter Conference on Applications of Computer Vision, WACV 2016. Lake Placid, United States: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/WACV.2016.7477656
View More -
Direct Semi-dense SLAM for Rolling Shutter Cameras
Kim, J. H., Cadena, C., & Reid, I. (2016). Direct semi-dense SLAM for rolling shutter cameras. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 1308–1315. https://doi.org/10.1109/ICRA.2016.7487263
View More -
Deep Convolutional Neural Networks for Human Embryonic Cell Counting
Khan A., Gould S., Salzmann M. (2016) Deep Convolutional Neural Networks for Human Embryonic Cell Counting. In: Hua G., Jégou H. (eds) Computer Vision – ECCV 2016 Workshops. ECCV 2016. Lecture Notes in Computer Science, vol 9913. Springer, Cham. https://doi.org/10.1007/978-3-319-46604-0_25
View More -
Unmanned Aerial Surveillance System for Hazard Collision Avoidance in Autonomous Shipping
Johansen, T. A., & Perez, T. (2016). Unmanned aerial surveillance system for hazard collision avoidance in autonomous shipping. In 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1056–1065). IEEE. http://doi.org/10.1109/ICUAS.2016.7502542
View More -
Robust Multi-body Feature Tracker: A Segmentation-free Approach
Ji, P., Li, H., Salzmann, M., & Zhong, Y. (2016). Robust Multi-Body Feature Tracker: A Segmentation-Free Approach. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 3843–3851. https://doi.org/10.1109/CVPR.2016.417
View More -
Haptics-Aided Path Planning and Virtual Fixture Based Dynamic Kinesthetic Boundary for Bilateral Teleoperation of VTOL Aerial Robots
Hou, X., Wang, X., & Mahony, R. (2016). Haptics-aided path planning and virtual fixture based dynamic kinesthetic boundary for bilateral teleoperation of VTOL aerial robots. Chinese Control Conference, CCC, 2016-August, 4705–4710. https://doi.org/10.1109/ChiCC.2016.7554082
View More -
Adaptive spatial filtering for off-axis digital holographic microscopy based on region recognition approach with iterative thresholding
He, X., Nguyen, C. V., Pratap, M., Zheng, Y., Wang, Y., Nisbet, D. R., Rug, M., Maier, A. G., & Lee, W. M. (2016). Adaptive spatial filtering for off-axis digital holographic microscopy based on region recognition approach with iterative thresholding. In M. R. Hutchinson & E. M. Goldys (Eds.), SPIE BioPhotonics Australasia (Vol. 10013, p. 1001329). SPIE. https://doi.org/10.1117/12.2242876
View More -
FANNG: Fast Approximate Nearest Neighbour Graphs
Harwood, B., & Drummond, T. (2016). FANNG: Fast approximate nearest neighbour graphs. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5713–5722. https://doi.org/10.1109/CVPR.2016.616
View More -
Discovery of Facial Motions using Deep Machine Perception
Ghasemi, A., Denman, S., Sridharan, S., & Fookes, C. (2016, May 23). Discovery of facial motions using deep machine perception. 2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016. https://doi.org/10.1109/WACV.2016.7477448
View More -
Exploiting Temporal Information for DCNN-based Fine-Grained Object Classification
Ge, Z., McCool, C., Sanderson, C., Wang, P., Liu, L., Reid, I., & Corke, P. (2016). Exploiting Temporal Information for DCNN-based Fine-Grained Object Classification. In Digital Image Computing: Techniques and Applications (DICTA). Gold Coast, Queensland. http://doi.org/10.1109/DICTA.2016.7797039
View More -
Fine-Grained Classification via Mixture of Deep Convolutional Neural Networks
Ge, Z., Bewley, A., McCool, C., Corke, P., Upcroft, B., & Sanderson, C. (2016). Fine-grained classification via mixture of deep convolutional neural networks. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1–6). IEEE. http://doi.org/10.1109/WACV.2016.7477700
View More -
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue
Garg R., B.G. V.K., Carneiro G., Reid I. (2016) Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9912. Springer, Cham. https://doi.org/10.1007/978-3-319-46484-8_45
View More -
Automated Plant and Leaf Separation: Application in 3D Meshes of Wheat Plants
Frolov, K., Fripp, J., Nguyen, C. V., Furbank, R., Bull, G., Kuffner, P., … Sirault, X. (2016). Automated Plant and Leaf Separation: Application in 3D Meshes of Wheat Plants. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–7). Gold Coast, Queensland: IEEE. http://doi.org/10.1109/DICTA.2016.7797011
View More -
Discriminative Hierarchical Rank Pooling for Activity Recognition
Fernando, B., Anderson, P., Hutter, M., & Gould, S. (2016). Discriminative Hierarchical Rank Pooling for Activity Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 1924–1932. https://doi.org/10.1109/CVPR.2016.212
View More -
A Consensus-Based Framework for Distributed Bundle Adjustment
Eriksson, A., Bastian, J., Chin, T. J., & Isaksson, M. (2016). A Consensus-Based Framework for Distributed Bundle Adjustment. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 1754–1762. https://doi.org/10.1109/CVPR.2016.194
View More -
Autonomous Greenhouse Gas Sampling Using Multiple Robotic Boats
Dunbabin, M. (2016). Autonomous greenhouse gas sampling using multiple robotic boats. In 10th International Conference on Field and Service Robotics, FSR 2015 (Vol. 113, pp. 17–30). Toronto, Canada: Springer Verlag. http://doi.org/10.1007/978-3-319-27702-8_2
View More -
Reliable Scale Estimation and Correction for Monocular Visual Odometry
Dingfu Zhou, Dai, Y., & Hongdong Li. (2016). Reliable scale estimation and correction for monocular Visual Odometry. In 2016 IEEE Intelligent Vehicles Symposium (IV) (pp. 490–495). Gothenburg, Sweden: IEEE. http://doi.org/10.1109/IVS.2016.7535431
View More -
MO-SLAM: Multi Object SLAM with Run-Time Object Discovery through Duplicates
Dharmasiri, T., Lui, V., & Drummond, T. (2016). MO-SLAM: Multi object SLAM with run-time object discovery through duplicates - IEEE Xplore Document. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016. Daejeon, Korea. http://doi.org/10.1109/IROS.2016.7759203
View More -
Output Regulation on the Special Euclidean Group SE(3)
De Marco, S., Marconi, L., Hamel, T., & Mahony, R. (2016). Output regulation on the Special Euclidean Group SE(3). 2016 IEEE 55th Conference on Decision and Control, CDC 2016, 4734–4739. https://doi.org/10.1109/CDC.2016.7798991
View More -
Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry
Dai, Y., Li, H., & Kneip, L. (2016). Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 4132–4140. https://doi.org/10.1109/CVPR.2016.448
View More -
Simultaneous Correspondences Estimation and Non-Rigid Structure Reconstruction
Dai, Y., & Li, H. (2016). Simultaneous Correspondences Estimation and Non-Rigid Structure Reconstruction. In 2016 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2016. Gold Coast, Queensland: Institute of Electrical and Electronics Engineers Inc. http://doi.org/10.1109/DICTA.2016.7797083
View More -
Guaranteed Outlier Removal With Mixed Integer Linear Programs
Chin, T. J., Kee, Y. H., Eriksson, A., & Neumann, F. (2016). Guaranteed outlier removal with mixed integer linear programs. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 5858–5866. https://doi.org/10.1109/CVPR.2016.631
View More -
A Distributed Robotic Vision Service
Chamberlain, W., Leitner, J., Drummond, T., & Corke, P. (2016). A distributed robotic vision service. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 2494–2499. https://doi.org/10.1109/ICRA.2016.7487403
View More -
Dynamic Image Networks for Action Recognition
Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., & Gould, S. (2016). Dynamic Image Networks for Action Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 3034–3042. https://doi.org/10.1109/CVPR.2016.331
View More -
ALExTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains
Bewley, A., Ott, L., Ramos, F., & Upcroft, B. (2016). Alextrac: Affinity learning by exploring temporal reinforcement within association chains. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2212–2218). Stockholm, Sweden: IEEE. http://doi.org/10.1109/ICRA.2016.7487371
View More -
Simple Online and Realtime Tracking
Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 3464–3468). IEEE. http://doi.org/10.1109/ICIP.2016.7533003
View More -
SPICE: Semantic Propositional Image Caption Evaluation
Anderson P., Fernando B., Johnson M., Gould S. (2016) SPICE: Semantic Propositional Image Caption Evaluation. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9909. Springer, Cham. https://doi.org/10.1007/978-3-319-46454-1_24
View More -
Velocity Aided Attitude Estimation for Aerial Robotic Vehicles Using Latent Rotation Scaling
Allibert, G., Mahony, R., & Bangura, M. (2016). Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 1538–1543. https://doi.org/10.1109/ICRA.2016.7487291
View More -
Complex Event Detection using Joint Max Margin and Semantic Features
Abbasnejad, I., Sridharan, S., Denman, S., Fookes, C., & Lucey, S. (2016, December 22). Complex Event Detection Using Joint Max Margin and Semantic Features. 2016 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2016. https://doi.org/10.1109/DICTA.2016.7797023
View More -
Measuring the Performance of Single Image Depth Estimation Methods
Cadena, C., Latif, Y., & Reid, I. D. (2016). Measuring the performance of single image depth estimation methods. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4150–4157). Daejeon, Korea: IEEE. http://doi.org/10.1109/IROS.2016.7759611
View More -
From ImageNet to Mining: Adapting Visual Object Detection with Minimal Supervision
Bewley A., Upcroft B. (2016) From ImageNet to Mining: Adapting Visual Object Detection with Minimal Supervision. In: Wettergreen D., Barfoot T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_33
View More
Edited Collection
-
Advances in Visual Computing
Bebis, G., Boyle, R., Parvin, et al. (2016). Advances in Visual Computing. (Vol. 10072). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-50835-1
View More -
Computer Vision and Image Understanding (Vol. 146)
Reid, I. (2016). 12th Asian conference on computer vision. Computer Vision and Image Understanding (Vol. 146).
View More -
Robotics Research: The 16th International Symposium ISRR
Inaba, M., & Corke, P. (2016). Robotics research: The 16th international symposium ISRR. In 16th International Symposium of Robotics Research, ISRR 2013 (Vol. 114). Singapore: Springer Verlag. http://doi.org/10.1007/978-3-319-28872-7
View More