Scientific Publications
-
Learning to Predict Crisp Boundaries
Deng R., Shen C., Liu S., Wang H., Liu X. (2018) Learning to Predict Crisp Boundaries. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11210. Springer, Cham. https://doi.org/10.1007/978-3-030-01231-1_35
View More -
Robust Fitting in Computer Vision: Easy or Hard?
Chin TJ., Cai Z., Neumann F. (2018) Robust Fitting in Computer Vision: Easy or Hard?. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11216. Springer, Cham. https://doi.org/10.1007/978-3-030-01258-8_43
View More -
Deterministic Consensus Maximization with Biconvex Programming
Cai Z., Chin TJ., Le H., Suter D. (2018) Deterministic Consensus Maximization with Biconvex Programming. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11216. Springer, Cham. https://doi.org/10.1007/978-3-030-01258-8_42
View More -
A Binary Optimization Approach for Constrained K-Means Clustering
Le H.M., Eriksson A., Do TT., Milford M. (2019) A Binary Optimization Approach for Constrained K-Means Clustering. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_24
View More -
Traversing Latent Space using Decision Ferns
Zuo Y., Avraham G., Drummond T. (2019) Traversing Latent Space Using Decision Ferns. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_37
View More -
Stereo Computation for a Single Mixture Image
Zhong Y., Dai Y., Li H. (2018) Stereo Computation for a Single Mixture Image. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11213. Springer, Cham. https://doi.org/10.1007/978-3-030-01240-3_2
View More -
Learning Free-Form Deformations for 3D Object Reconstruction
Jack, D., Pontes, J. K., Sridharan, S., Fookes, C., Shirazi, S., Maire, F., & Eriksson, A. (2019). Learning Free-Form Deformations for 3D Object Reconstruction. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11362 LNCS, 317–333. https://doi.org/10.1007/978-3-030-20890-5_21
View More -
Monocular Depth Estimation with Augmented Ordinal Depth Relationships
Cao, Y., Zhao, T., Xian, K., Shen, C., Cao, Z., & Xu, S. (2018). Monocular Depth Estimation with Augmented Ordinal Depth Relationships. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2018.2877944
View More -
Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction
Zhan, H., Garg, R., Weerasekera, C. S., Li, K., Agarwal, H., & Reid, I. M. (2018). Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 340–349). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00043
View More -
Discrimination-aware channel pruning for deep neural networks
Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., & Zhu, J. (2018). Discrimination-aware Channel Pruning for Deep Neural Networks. Advances in Neural Information Processing Systems, 2018-December, 875–886.
View More -
OpenSeqSLAM2.0: An Open Source Toolbox for Visual Place Recognition Under Changing Conditions
Talbot, B., Garg, S., & Milford, M. (2018). OpenSeqSLAM2.0: An Open Source Toolbox for Visual Place Recognition Under Changing Conditions. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 7758–7765). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8593761
View More -
Scalable Deep k-Subspace Clustering
Zhang T., Ji P., Harandi M., Hartley R., Reid I. (2019) Scalable Deep k-Subspace Clustering. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_30
View More -
Continuous-Time Intensity Estimation Using Event Cameras
Scheerlinck C., Barnes N., Mahony R. (2019) Continuous-Time Intensity Estimation Using Event Cameras. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_20
View More -
Action Anticipation by Predicting Future Dynamic Images
Rodriguez C., Fernando B., Li H. (2019) Action Anticipation by Predicting Future Dynamic Images. In: Leal-Taixé L., Roth S. (eds) Computer Vision – ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science, vol 11131. Springer, Cham. https://doi.org/10.1007/978-3-030-11015-4_10
View More -
An adaptive localization system for image storage and localization latency requirements
Mao, J., Hu, X., & Milford, M. (2018). An adaptive localization system for image storage and localization latency requirements. Robotics and Autonomous Systems, 107, 246–261. http://doi.org/10.1016/J.ROBOT.2018.06.007
View More -
Assisted Control for Semi-Autonomous Power Infrastructure Inspection Using Aerial Vehicles
*McFadyen, A., Dayoub, F., Martin, S., Ford, J., & Corke, P. (2018). Assisted Control for Semi-Autonomous Power Infrastructure Inspection Using Aerial Vehicles. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5719–5726). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8593529
View More -
Closing the Loop for Robotic Grasping: A Real-time, Generative Grasp Synthesis Approach
Morrison, D., Corke, P., & Leitner, J. (2018). Closing the Loop for Robotic Grasping: A Real-time, Generative Grasp Synthesis Approach. Retrieved from http://arxiv.org/abs/1804.05172
View More -
Efficient Subpixel Refinement with Symbolic Linear Predictors
Lui, V., Geeves, J., Yii, W., & Drummond, T. (2018). Efficient Subpixel Refinement with Symbolic Linear Predictors. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8165–8173). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00852
View More -
Quickest Detection of Intermittent Signals With Application to Vision-Based Aircraft Detection
James, J., Ford, J. J., & Molloy, T. L. (2018). Quickest Detection of Intermittent Signals With Application to Vision-Based Aircraft Detection. IEEE Transactions on Control Systems Technology, 1–8. http://doi.org/10.1109/TCST.2018.2872468
View More -
Structure Aware SLAM Using Quadrics and Planes
Hosseinzadeh M., Latif Y., Pham T., Suenderhauf N., Reid I. (2019) Structure Aware SLAM Using Quadrics and Planes. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_26
View More -
Feature Map Filtering: Improving Visual Place Recognition with Convolutional Calibration
Hausler, S., Jacobson, A., & Milford, M. (2018). Feature Map Filtering: Improving Visual Place Recognition with Convolutional Calibration. Retrieved from http://arxiv.org/abs/1810.12465
View More -
LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics
Garg, S., Suenderhauf, N., & Milford, M. (2018). LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics. Retrieved from http://arxiv.org/abs/1804.05526
View More -
An End-to-End TextSpotter with Explicit Alignment and Attention
He, T., Tian, Z., Huang, W., Shen, C., Qiao, Y., & Sun, C. (2018). An End-to-End TextSpotter with Explicit Alignment and Attention. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5020–5029). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00527
View More -
Don’t Look Back: Robustifying Place Categorization for Viewpoint- and Condition-Invariant Place Recognition
Garg, S., Suenderhauf, N., & Milford, M. (2018). Don’t Look Back: Robustifying Place Categorization for Viewpoint- and Condition-Invariant Place Recognition. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3645–3652). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8461051
View More -
ENG: End-to-end Neural Geometry for Robust Depth and Pose Estimation using CNNs
Dharmasiri T., Spek A., Drummond T. (2019) ENG: End-to-End Neural Geometry for Robust Depth and Pose Estimation Using CNNs. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_39
View More -
Neural Algebra of Classifiers
*Cruz, R. S., Fernando, B., Cherian, A., & Gould, S. (2018). Neural Algebra of Classifiers. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 729–737). IEEE. https://doi.org/10.1109/WACV.2018.00085
View More -
Towards vision-based manipulation of plastic materials
*Cherubini, A., Leitner, J., Ortenzi, V., & Corke, P. (2018). Towards vision-based manipulation of plastic materials. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 485–490). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8594108
View More -
Globally-Optimal Inlier Set Maximisation for Camera Pose and Correspondence Estimation
Campbell, D. J., Petersson, L., Kneip, L., & Li, H. (2018). Globally-Optimal Inlier Set Maximisation for Camera Pose and Correspondence Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2018.2848650
View More -
Learning Deployable Navigation Policies at Kilometer Scale from a Single Traversal
Bruce, J., Sünderhauf, N., Mirowski, P., Hadsell, R., & Milford, M. (2018). Learning Deployable Navigation Policies at Kilometer Scale from a Single Traversal. Retrieved from http://arxiv.org/abs/1807.05211
View More -
Training Deep Neural Networks for Visual Servoing
*Bateux, Q., Marchand, E., Leitner, J., Chaumette, F., & Corke, P. (2018). Training Deep Neural Networks for Visual Servoing. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–8). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8461068
View More -
VIENA 2: A Driving Anticipation Dataset
Aliakbarian, M. S., Saleh, F. S., Salzmann, M., Fernando, B., Petersson, L., & Andersson, L. (2019). VIENA2: A Driving Anticipation Dataset. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11361 LNCS, 449–466. https://doi.org/10.1007/978-3-030-20887-5_28
View More -
Model-free and learning-free grasping by Local Contact Moment matching
*Adjigble, M., Marturi, N., Ortenzi, V., Rajasekaran, V., Corke, P., & Stolkin, R. (2018). Model-free and learning-free grasping by Local Contact Moment matching. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2933–2940). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8594226
View More -
Dense 3D Face Correspondence
Gilani, S. Z., Mian, A., Shafait, F., & Reid, I. (2018). Dense 3D Face Correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(7), 1584–1598. https://doi.org/10.1109/TPAMI.2017.2725279
View More -
Coresets for Triangulation
Gilani, S. Z., Mian, A., Shafait, F., & Reid, I. (2018). Dense 3D Face Correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(7), 1584–1598. https://doi.org/10.1109/TPAMI.2017.2725279
View More -
The Role of Symmetry in Rigidity Analysis: A Tool for Network Localisation and Formation Control
Stacey, G., & Mahony, R. (2018). The Role of Symmetry in Rigidity Analysis: A Tool for Network Localization and Formation Control. IEEE Transactions on Automatic Control, 63(5), 1313–1328. https://doi.org/10.1109/TAC.2017.2747760
View More -
Incorporating Network Built-in Priors in Weakly-supervised Semantic Segmentation
Saleh, F. S., Aliakbarian, M. S., Salzmann, M., Petersson, L., Alvarez, J. M., & Gould, S. (2018). Incorporating Network Built-in Priors in Weakly-Supervised Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1382–1396. https://doi.org/10.1109/TPAMI.2017.2713785
View More -
Guaranteed Outlier Removal for Point Cloud Registration with Correspondences
Guaranteed Outlier Removal for Point Cloud Registration with Correspondences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12), 2868–2882. https://doi.org/10.1109/TPAMI.2017.2773482
View More -
Structured Learning of Tree Potentials in CRF for Image Segmentation
Liu, F., Lin, G., Qiao, R., & Shen, C. (2017). Structured Learning of Tree Potentials in CRF for Image Segmentation. IEEE Transactions on Neural Networks and Learning Systems, PP(99), 1–7. http://doi.org/10.1109/TNNLS.2017.2690453 *In Press
View More -
Deja vu: Scalable Place Recognition Using Mutually Supportive Feature Frequencies
Jacobson, A., Scheirer, W., & Milford, M. (2017). Déjà vu: Scalable place recognition using mutually supportive feature frequencies. IEEE International Conference on Intelligent Robots and Systems, 2017-September, 6654–6661. https://doi.org/10.1109/IROS.2017.8206580
View More -
Design of a multi-modal end-effector and grasping system- How integrated design helped win the Amazon Robotics Challenge
Kelly-Boxall, N., Morrison, D., Wade-McCue, S., Corke, P., & Leitner, J. (2018). Design of a multi-modal end-effector and grasping system- How integrated design helped win the amazon robotics challenge. Australasian Conference on Robotics and Automation, ACRA, 2018-December.
View More -
Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods
Harandi, M., Salzmann, M., & Hartley, R. (2018). Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(1), 48–62. https://doi.org/10.1109/TPAMI.2017.2655048
View More -
On the structure of kinematic systems with complete symmetry
Trumpf, J., Mahony, R., & Hamel, T. (2019). On the structure of kinematic systems with complete symmetry. Proceedings of the IEEE Conference on Decision and Control, 2018-December, 1276–1280. https://doi.org/10.1109/CDC.2018.8619718
View More -
Seeing Deeply and Bidirectionally: A Deep Learning Approach for Single Image Reflection Removal
Yang J., Gong D., Liu L., Shi Q. (2018) Seeing Deeply and Bidirectionally: A Deep Learning Approach for Single Image Reflection Removal. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11207. Springer, Cham. https://doi.org/10.1007/978-3-030-01219-9_40
View More -
Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge
Teney, D., Anderson, P., He, X., & Hengel, A. van den. (2018). Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4223–4232). IEEE. http://doi.org/10.1109/CVPR.2018.00444
View More -
Not All Negatives Are Equal: Learning to Track With Multiple Background Clusters
Zhu, G., Porikli, F., & Li, H. (2018). Not All Negatives Are Equal: Learning to Track With Multiple Background Clusters. IEEE Transactions on Circuits and Systems for Video Technology, 28(2), 314–326. http://doi.org/10.1109/TCSVT.2016.2615518
View More -
Deblurring Natural Image Using Super-Gaussian Fields
Liu Y., Dong W., Gong D., Zhang L., Shi Q. (2018) Deblurring Natural Image Using Super-Gaussian Fields. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11205. Springer, Cham. https://doi.org/10.1007/978-3-030-01246-5_28
View More -
Adversarial Training of Variational Auto-Encoders for High Fidelity Image Generation
Khan, S. H., Hayat, M., & Barnes, N. (2018). Adversarial Training of Variational Auto-Encoders for High Fidelity Image Generation. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1312–1320). Lake Tahoe, United States: IEEE. https://doi.org/10.1109/WACV.2018.00148
View More -
Semi-dense 3D Reconstruction with a Stereo Event Camera
Zhou Y., Gallego G., Rebecq H., Kneip L., Li H., Scaramuzza D. (2018) Semi-dense 3D Reconstruction with a Stereo Event Camera. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11205. Springer, Cham. https://doi.org/10.1007/978-3-030-01246-5_15
View More -
3D Geometry-Aware Semantic Labeling of Outdoor Street Scenes
*Zhong, Y., Dai, Y., & Li, H. (2018). 3D Geometry-Aware Semantic Labeling of Outdoor Street Scenes. In 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 2343–2349). IEEE. http://doi.org/10.1109/ICPR.2018.8545378
View More -
Open-World Stereo Video Matching with Deep RNN
Zhong Y., Li H., Dai Y. (2018) Open-World Stereo Video Matching with Deep RNN. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11206. Springer, Cham. https://doi.org/10.1007/978-3-030-01216-8_7
View More -
Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective
*Zhang, J., Zhang, T., Daf, Y., Harandi, M., & Hartley, R. (2018). Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9029–9038). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00941
View More -
Deep Auto-Set: A Deep Auto-Encoder-Set Network for Activity Recognition Using Wearables
Varamin, A. A., Abbasnejad, E., Shi, Q., Ranasinghe, D. C., & Rezatofighi, H. (2018). Deep Auto-Set: A Deep Auto-Encoder-Set Network for Activity Recognition Using Wearables (Vol. 18). Retrieved from https://doi.org/10.475/123_4
View More -
Robust Visual Odometry in Underwater Environment
*Zhang, J., Ila, V., & Kneip, L. (2018). Robust Visual Odometry in Underwater Environment. In 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO) (pp. 1–9). Kobe, Japan: IEEE. http://doi.org/10.1109/OCEANSKOBE.2018.8559452
View More -
Goal-Oriented Visual Question Generation via Intermediate Rewards
Zhang, J., Wu, Q., Shen, C., Zhang, J., Lu, J., & van den Hengel, A. (2018). Goal-Oriented Visual Question Generation via Intermediate Rewards. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11209 LNCS, 189–204. https://doi.org/10.1007/978-3-030-01228-1_12
View More -
Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes
*Yu, X., Fernando, B., Hartley, R., & Porikli, F. (2018). Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 908–917). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00101
View More -
Face Super-Resolution Guided by Facial Component Heatmaps
Yu X., Fernando B., Ghanem B., Porikli F., Hartley R. (2018) Face Super-Resolution Guided by Facial Component Heatmaps. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11213. Springer, Cham. https://doi.org/10.1007/978-3-030-01240-3_14
View More -
Learning Discriminative Video Representations Using Adversarial Perturbations
Wang J., Cherian A. (2018) Learning Discriminative Video Representations Using Adversarial Perturbations. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11208. Springer, Cham. https://doi.org/10.1007/978-3-030-01225-0_42
View More -
Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine
Saha, S. K., Fernando, B., Cuadros, J., Xiao, D., & Kanagasingam, Y. (2018). Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine. Journal of Digital Imaging, 31(6), 869–878. http://doi.org/10.1007/s10278-018-0084-9
View More -
Embedding Bilateral Filter in Least Squares for Efficient Edge-preserving Image Smoothing
Liu, W., Zhang, P., Chen, X., Shen, C., Huang, X., & Yang, J. (2018). Embedding Bilateral Filter in Least Squares for Efficient Edge-preserving Image Smoothing. IEEE Transactions on Circuits and Systems for Video Technology, 1–1. http://doi.org/10.1109/TCSVT.2018.2890202
View More -
Robust and Efficient Relative Pose With a Multi-Camera System for Autonomous Driving in Highly Dynamic Environments
Liu, L., Li, H., Dai, Y., & Pan, Q. (2018). Robust and efficient relative pose with a Multi-Camera system for autonomous driving in highly dynamic environments. IEEE Transactions on Intelligent Transportation Systems, 19(8), 2432–2444. https://doi.org/10.1109/TITS.2017.2749409
View More -
Reading car license plates using deep neural networks
Li, H., Wang, P., You, M., & Shen, C. (2018). Reading car license plates using deep neural networks. Image and Vision Computing, 72, 14–23. http://doi.org/10.1016/J.IMAVIS.2018.02.002
View More -
Structure from Recurrent Motion: From Rigidity to Recurrency
*Li, X., Li, H., Joo, H., Liu, Y., & Sheikh, Y. (2018). Structure from Recurrent Motion: From Rigidity to Recurrency. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3032–3040). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00320
View More -
Kernel Support Vector Machines and Convolutional Neural Networks
Jiang, S., Hartley, R., & Fernando, B. (2018). Kernel Support Vector Machines and Convolutional Neural Networks. In 2018 Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–7). Canberra, Australia: IEEE. http://doi.org/10.1109/DICTA.2018.8615840
View More -
Semi-Supervised SLAM: Leveraging Low-Cost Sensors on Underground Autonomous Vehicles for Position Tracking
Jacobson, A., Zeng, F., Smith, D., Boswell, N., Peynot, T., & Milford, M. (2018). Semi-Supervised SLAM: Leveraging Low-Cost Sensors on Underground Autonomous Vehicles for Position Tracking. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3970–3977). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8593750
View More -
Parallel Attention: A Unified Framework for Visual Object Discovery Through Dialogs and Queries
Zhuang, B., Wu, Q., Shen, C., Reid, I., & Hengel, A. van den. (2018). Parallel Attention: A Unified Framework for Visual Object Discovery Through Dialogs and Queries. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4252–4261). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00447
View More -
Towards Effective Low-Bitwidth Convolutional Neural Networks
Zhuang, B., Shen, C., Tan, M., Liu, L., & Reid, I. (2018). Towards Effective Low-Bitwidth Convolutional Neural Networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7920–7928). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00826
View More -
Are You Talking to Me? Reasoned Visual Dialog Generation Through Adversarial Learning
Wu, Q., Wang, P., Shen, C., Reid, I., & Hengel, A. van den. (2018). Are You Talking to Me? Reasoned Visual Dialog Generation Through Adversarial Learning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6106–6115). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00639
View More -
Bayesian Semantic Instance Segmentation in Open Set World
Pham, T., Vijay Kumar, B. G., Do, T. T., Carneiro, G., & Reid, I. (2018). Bayesian semantic instance segmentation in open set world. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11214 LNCS, 3–18. https://doi.org/10.1007/978-3-030-01249-6_1
View More -
Training Medical Image Analysis Systems like Radiologists
Maicas G., Bradley A.P., Nascimento J.C., Reid I., Carneiro G. (2018) Training Medical Image Analysis Systems like Radiologists. In: Frangi A., Schnabel J., Davatzikos C., Alberola-López C., Fichtinger G. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, vol 11070. Springer, Cham. https://doi.org/10.1007/978-3-030-00928-1_62
View More -
Visual Question Answering with Memory-Augmented Networks
Ma, C., Shen, C., Dick, A., Wu, Q., Wang, P., Hengel, A. van den, & Reid, I. (2018). Visual Question Answering with Memory-Augmented Networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6975–6984). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00729
View More -
Deep Regression Tracking with Shrinkage Loss
Lu X., Ma C., Ni B., Yang X., Reid I., Yang MH. (2018) Deep Regression Tracking with Shrinkage Loss. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11218. Springer, Cham. https://doi.org/10.1007/978-3-030-01264-9_22
View More -
Exploring Context with Deep Structured Models for Semantic Segmentation
Lin, G., Shen, C., van den Hengel, A., & Reid, I. (2018). Exploring Context with Deep Structured Models for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1352–1366. http://doi.org/10.1109/TPAMI.2017.2708714
View More -
Efficient Dense Point Cloud Object Reconstruction Using Deformation Vector Fields
Li K., Pham T., Zhan H., Reid I. (2018) Efficient Dense Point Cloud Object Reconstruction Using Deformation Vector Fields. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11216. Springer, Cham. https://doi.org/10.1007/978-3-030-01258-8_31
View More -
Drones count wildlife more accurately and precisely than humans
Hodgson, J. C., Mott, R., Baylis, S. M., Pham, T. T., Wotherspoon, S., Kilpatrick, A. D., Ramesh, R.S., Reid, I., Terauds, A., & Koh, L. P. (2018). Drones count wildlife more accurately and precisely than humans. Methods in Ecology and Evolution, 9(5), 1160–1167. http://doi.org/10.1111/2041-210X.12974
View More -
Multi-modal Cycle-Consistent Generalized Zero-Shot Learning
Felix R., Vijay Kumar B.G., Reid I., Carneiro G. (2018) Multi-modal Cycle-Consistent Generalized Zero-Shot Learning. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11210. Springer, Cham. https://doi.org/10.1007/978-3-030-01231-1_2
View More -
AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection
Do, T.-T., Nguyen, A., & Reid, I. (2018). AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–5). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8460902
View More -
Semisupervised and Weakly Supervised Road Detection Based on Generative Adversarial Networks
Han, X., Lu, J., Zhao, C., You, S., & Li, H. (2018). Semisupervised and Weakly Supervised Road Detection Based on Generative Adversarial Networks. IEEE Signal Processing Letters, 25(4), 551–555. http://doi.org/10.1109/LSP.2018.2809685
View More -
Automatic Image Cropping for Visual Aesthetic Enhancement Using Deep Neural Networks and Cascaded Regression
Guo, G., Wang, H., Shen, C., Yan, Y., & Liao, H.-Y. M. (2018). Automatic Image Cropping for Visual Aesthetic Enhancement Using Deep Neural Networks and Cascaded Regression. IEEE Transactions on Multimedia, 20(8), 2073–2085. http://doi.org/10.1109/TMM.2018.2794262
View More -
Visual Grounding via Accumulated Attention
Deng, C., Wu, Q., Wu, Q., Hu, F., Lyu, F., & Tan, M. (2018). Visual Grounding via Accumulated Attention. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7746–7755). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00808
View More -
Vision Based Forward Sensitive Reactive Control for a Quadrotor VTOL
Stevens, J.-L., & Mahony, R. (2018). Vision Based Forward Sensitive Reactive Control for a Quadrotor VTOL. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5232–5238). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8593606
View More -
Calibrating Light-Field Cameras Using Plenoptic Disc Features
O’brien, S., Trumpf, J., Ila, V., & Mahony, R. (2018). Calibrating Light-Field Cameras Using Plenoptic Disc Features. In 2018 International Conference on 3D Vision (3DV) (pp. 286–294). Verona, Italy: IEEE. http://doi.org/10.1109/3DV.2018.00041
View More -
A Geometric Observer for Scene Reconstruction Using Plenoptic Cameras
O’Brien, S. G. P., Trumpf, J., Ila, V., & Mahony, R. (2018). A Geometric Observer for Scene Reconstruction Using Plenoptic Cameras. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 557–564). Florida, United States: IEEE. http://doi.org/10.1109/CDC.2018.8618954
View More -
Homography estimation of a moving planar scene from direct point correspondence
De Marco, S., Hua, M. D., Mahony, R., & Hamel, T. (2019). Homography estimation of a moving planar scene from direct point correspondence. Proceedings of the IEEE Conference on Decision and Control, 2018-December, 565–570. https://doi.org/10.1109/CDC.2018.8619386
View More -
Video Representation Learning Using Discriminative Pooling
Wang, J., Cherian, A., Porikli, F., & Gould, S. (2018). Video Representation Learning Using Discriminative Pooling. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1149–1158). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00126
View More -
Non-linear Temporal Subspace Representations for Activity Recognition
Cherian, A., Sra, S., Gould, S., & Hartley, R. (2018). Non-linear Temporal Subspace Representations for Activity Recognition. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2197–2206). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00234
View More -
One-class Gaussian process regressor for quality assessment of transperineal ultrasound images
Camps, S. M., Houben, T., Fontanarosa, D., Edwards, C., Antico, M., Dunnhofer, M., Martens, E.G.H.J, Baeza, J.A., Vanneste, B.G.L., van Limbergen, E.J., de W., Peter, H.N., Verhaegen, F., & Carneiro, G. (2018). One-class Gaussian process regressor for quality assessment of transperineal ultrasound images. In International Conference on Medical Imaging with Deep Learning (MIDL). Amsterdam. Retrieved from https://eprints.qut.edu.au/120113/
View More -
Action Recognition with Dynamic Image Networks
Bilen, H., Fernando, B., Gavves, E., & Vedaldi, A. (2018). Action Recognition with Dynamic Image Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12), 2799–2813. http://doi.org/10.1109/TPAMI.2017.2769085
View More -
Vision-and-Language Navigation: Interpreting Visually-Grounded Navigation Instructions in Real Environments
Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sunderhauf, N., Reid, I., Gould, S., & van den Hengel, A. (2018). Vision-and-Language Navigation: Interpreting Visually-Grounded Navigation Instructions in Real Environments. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3674–3683). IEEE. http://doi.org/10.1109/CVPR.2018.00387
View More -
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., & Zhang, L. (2018). Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6077–6086). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00636
View More -
Searching for Representative Modes on Hypergraphs for Robust Geometric Model Fitting
Wang, H., Xiao, G., Yan, Y., & Suter, D. (2019). Searching for Representative Modes on Hypergraphs for Robust Geometric Model Fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(3), 697–711. https://doi.org/10.1109/TPAMI.2018.2803173
View More -
Semantics-Aware Visual Object Tracking
Yao, R., Lin, G., Shen, C., Zhang, Y., & Shi, Q. (2019). Semantics-aware visual object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 29(6), 1687–1700. https://doi.org/10.1109/TCSVT.2018.2848358
View More -
Learning Context Flexible Attention Model for Long-Term Visual Place Recognition
Chen, Z., Liu, L., Sa, I., Ge, Z., & Chli, M. (2018). Learning Context Flexible Attention Model for Long-Term Visual Place Recognition. IEEE Robotics and Automation Letters, 3(4), 4015–4022. http://doi.org/10.1109/LRA.2018.2859916
View More -
Unsupervised Domain Adaptation Using Robust Class-Wise Matching
Zhang, L., Wang, P., Wei, W., Lu, H., Shen, C., Van Den Hengel, A., & Zhang, Y. (2019). Unsupervised Domain Adaptation Using Robust Class-Wise Matching. IEEE Transactions on Circuits and Systems for Video Technology, 29(5), 1339–1349. https://doi.org/10.1109/TCSVT.2018.2842206
View More -
Practical Motion Segmentation for Urban Street View Scenes
Rubino, C., Del Bue, A., & Chin, T.-J. (2018). Practical Motion Segmentation for Urban Street View Scenes. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1879–1886). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8460993
View More -
VITAL: VIsual Tracking via Adversarial Learning
Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Lau, Rynson W.H., & Yang, M.-H. (2018). VITAL: VIsual Tracking via Adversarial Learning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8990–8999). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00937
View More -
A Fast Resection-Intersection Method for the Known Rotation Problem
Zhang, Q., Chin, T.-J., & Le, H. M. (2018). A Fast Resection-Intersection Method for the Known Rotation Problem. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3012–3021). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00318
View More -
Rotation Averaging and Strong Duality
Eriksson, A., Olsson, C., Kahl, F., & Chin, T.-J. (2018). Rotation Averaging and Strong Duality. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 127–135). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00021
View More -
ArthroSLAM: Multi-Sensor Robust Visual Localization for Minimally Invasive Orthopedic Surgery
Marmol, A., Corke, P., & Peynot, T. (2018). ArthroSLAM: Multi-Sensor Robust Visual Localization for Minimally Invasive Orthopedic Surgery. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3882–3889). Madrid, Spain: IEEE. https://doi.org/10.1109/IROS.2018.8593501
View More -
QuadricSLAM: Dual Quadrics From Object Detections as Landmarks in Object-Oriented SLAM
Nicholson, L., Milford, M., & Sunderhauf, N. (2019). QuadricSLAM: Dual quadrics from object detections as landmarks in object-oriented SLAM. IEEE Robotics and Automation Letters, 4(1), 1–8. https://doi.org/10.1109/LRA.2018.2866205
View More -
Collaborative Planning for Mixed-Autonomy Lane Merging
Bansal, S., Cosgun, A., Nakhaei, A., & Fujimura, K. (2018). Collaborative Planning for Mixed-Autonomy Lane Merging. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4449–4455). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8594197
View More -
Relative Pose Based Redundancy Removal: Collaborative RGB-D Data Transmission in Mobile Visual Sensor Networks
Wang, X., Şekercioğlu, Y., Drummond, T., Frémont, V., Natalizio, E., & Fantoni, I. (2018). Relative Pose Based Redundancy Removal: Collaborative RGB-D Data Transmission in Mobile Visual Sensor Networks. Sensors, 18(8), 2430. http://doi.org/10.3390/s18082430
View More -
CReaM: Condensed Real-time Models for Depth Prediction using Convolutional Neural Networks
Spek, A., Dharmasiri, T., & Drummond, T. (2018). CReaM: Condensed Real-time Models for Depth Prediction using Convolutional Neural Networks. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 540–547). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8594243
View More -
Deep Metric Learning and Image Classification with Nearest Neighbour Gaussian Kernels
Meyer, B. J., Harwood, B., & Drummond, T. (2018). Deep Metric Learning and Image Classification with Nearest Neighbour Gaussian Kernels. In IEEE International Conference on Image Processing (ICIP) (pp. 151–155). Athens, Greece: IEEE. http://doi.org/10.1109/ICIP.2018.8451297
View More -
Approximate Fisher Information Matrix to Characterise the Training of Deep Neural Networks
Liao, Z., Drummond, T., Reid, I., & Carneiro, G. (2018). Approximate Fisher Information Matrix to Characterise the Training of Deep Neural Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. http://doi.org/10.1109/TPAMI.2018.2876413
View More -
A review of deep learning in the study of materials degradation
Nash, W., Drummond, T., & Birbilis, N. (2018). A review of deep learning in the study of materials degradation. Npj Materials Degradation, 2(1), 37. http://doi.org/10.1038/s41529-018-0058-x
View More -
An Extended Filtered Channel Framework for Pedestrian Detection
You, M., Zhang, Y., Shen, C., & Zhang, X. (2018). An Extended Filtered Channel Framework for Pedestrian Detection. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1640–1651. https://doi.org/10.1109/TITS.2018.2807199
View More -
An Embarrassingly Simple Approach to Visual Domain Adaptation
Lu, H., Shen, C., Cao, Z., Xiao, Y., & van den Hengel, A. (2018). An Embarrassingly Simple Approach to Visual Domain Adaptation. IEEE Transactions on Image Processing, 27(7), 3403–3417. https://doi.org/10.1109/TIP.2018.2819503
View More -
Cluster Sparsity Field: An Internal Hyperspectral Imagery Prior for Reconstruction
Zhang, L., Wei, W., Zhang, Y., Shen, C., van den Hengel, A., & Shi, Q. (2018). Cluster Sparsity Field: An Internal Hyperspectral Imagery Prior for Reconstruction. International Journal of Computer Vision, 126(8), 797–821. https://doi.org/10.1007/s11263-018-1080-8
View More -
Multi-label learning based deep transfer neural network for facial attribute classification
Zhuang, N., Yan, Y., Chen, S., Wang, H., & Shen, C. (2018). Multi-label learning based deep transfer neural network for facial attribute classification. Pattern Recognition, 80, 225–240. https://doi.org/10.1016/J.PATCOG.2018.03.018
View More -
Multi-Task Structure-aware Context Modeling for Robust Keypoint-based Object Tracking
Li, X., Zhao, L., Ji, W., Wu, Y., Wu, F., Yang, M.-H., Dacheng, T., Reid, I. (2018). Multi-Task Structure-aware Context Modeling for Robust Keypoint-based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2018.2818132 *In Press
View More -
The limits and potentials of deep learning for robotics
Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B., Abbeel, P., Burgard, W., Milford, M., & Corke, P. (2018). The limits and potentials of deep learning for robotics. The International Journal of Robotics Research, 37(4–5), 405–420. http://doi.org/10.1177/0278364918770733
View More -
Automating analysis of vegetation with computer vision: Cover estimates and classification
McCool, C., Beattie, J., Milford, M., Bakker, J. D., Moore, J. L., & Firn, J. (2018). Automating analysis of vegetation with computer vision: Cover estimates and classification. Ecology and Evolution, 8(12), 6005–6015. http://doi.org/10.1002/ece3.4135
View More -
A dynamic planner for object assembly tasks based on learning the spatial relationships of its parts from a single demonstration
Abbas, A., Maire, F., Shirazi, S., Dayoub, F., & Eich, M. (2018). A dynamic planner for object assembly tasks based on learning the spatial relationships of its parts from a single demonstration. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11320 LNAI, 759–765. https://doi.org/10.1007/978-3-030-03991-2_68
View More -
A rapidly deployable classification system using visual data for the application of precision weed management
Hall, D., Dayoub, F., Perez, T., & McCool, C. (2018). A rapidly deployable classification system using visual data for the application of precision weed management. Computers and Electronics in Agriculture, 148, 107–120. http://doi.org/10.1016/J.COMPAG.2018.02.023
View More -
SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes
Pham, T. T., Do, T.-T., Sunderhauf, N., & Reid, I. (2018). SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–9). Brisbane: IEEE. http://doi.org/10.1109/ICRA.2018.8461108
View More -
Measures of incentives and confidence in using a social robot
Robinson, N. L., Connolly, J., Johnson, G. M., Kim, Y., Hides, L., & Kavanagh, D. J. (2018). Measures of incentives and confidence in using a social robot. Science Robotics, 3(21), eaat6963. http://doi.org/10.1126/scirobotics.aat6963
View More -
Glare-free retinal imaging using a portable light field fundus camera
Palmer, D. W., Coppin, T., Rana, K., Dansereau, D. G., Suheimat, M., Maynard, M. Atchison, D. A., Roberts, J., Crawford, R., & Jaiprakash, A. (2018). Glare-free retinal imaging using a portable light field fundus camera. Biomedical Optics Express, 9(7), 3178. http://doi.org/10.1364/BOE.9.003178
View More -
Learning to Detect Aircraft for Long-Range Vision-Based Sense-and-Avoid Systems
James, J., Ford, J. J., & Molloy, T. L. (2018). Learning to Detect Aircraft for Long-Range Vision-Based Sense-and-Avoid Systems. IEEE Robotics and Automation Letters, 3(4), 4383–4390. http://doi.org/10.1109/LRA.2018.2867237
View More -
Leveraging variable sensor spatial acuity with a homogeneous, multi-scale place recognition framework
Jacobson, A., Chen, Z., & Milford, M. (2018). Leveraging variable sensor spatial acuity with a homogeneous, multi-scale place recognition framework. Biological Cybernetics, 1–17. http://doi.org/10.1007/s00422-017-0745-7
View More -
Bootstrapping the Performance of Webly Supervised Semantic Segmentation
Shen, T., Lin, G., Shen, C., & Reid, I. (2018). Bootstrapping the Performance of Webly Supervised Semantic Segmentation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1363–1371). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00148
View More -
Scalable Dense Non-rigid Structure-from-Motion: A Grassmannian Perspective
Kumar, S., Cherian, A., Dai, Y., & Li, H. (2018). Scalable Dense Non-rigid Structure-from-Motion: A Grassmannian Perspective. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 254–263). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00034
View More -
Output regulation for systems on matrix Lie-groups
de Marco, S., Marconi, L., Mahony, R., & Hamel, T. (2018). Output regulation for systems on matrix Lie-groups. Automatica, 87, 8–16. https://doi.org/10.1016/J.AUTOMATICA.2017.08.006
View More -
Rhythmic Representations: Learning Periodic Patterns for Scalable Place Recognition at a Sublinear Storage Cost.
Yu, L., Jacobson, A., & Milford, M. (2018). Rhythmic Representations: Learning Periodic Patterns for Scalable Place Recognition at a Sublinear Storage Cost. IEEE Robotics and Automation Letters, 3(2), 811–818. http://doi.org/10.1109/LRA.2018.2792144
View More -
Multimodal Trip Hazard Affordance Detection on Construction Sites
McMahon, S., Sunderhauf, N., Upcroft, B., & Milford, M. (2018). Multimodal Trip Hazard Affordance Detection on Construction Sites. IEEE Robotics and Automation Letters, 3(1), 1–8. http://doi.org/10.1109/LRA.2017.2719763
View More -
Special issue on deep learning in robotics
Sünderhauf, N., Leitner, J., Upcroft, B., & Roy, N. (2018, April 27). Special issue on deep learning in robotics. The International Journal of Robotics Research. SAGE PublicationsSage UK: London, England. http://doi.org/10.1177/0278364918769189
View More -
Just-In-Time Reconstruction: Inpainting Sparse Maps using Single View Depth Predictors as Priors
*Weerasekera, C. S., Dharmasiri, T., Garg, R., Drummond, T., & Reid, I. (2018). Just-in-Time Reconstruction: Inpainting Sparse Maps Using Single View Depth Predictors as Priors. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–9). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8460549
View More -
Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM
Park, C., Moghadam, P., Kim, S., Elfes, A., Fookes, C., & Sridharan, S. (2017). Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM. Retrieved from http://arxiv.org/abs/1711.01691
View More -
Cartman: The low-cost Cartesian Manipulator that won the Amazon Robotics Challenge
Morrison, D., Tow, A. W., McTaggart, M., Smith, R., Kelly-Boxall, N., Wade-McCue, S., Erskine, J., Grinover, R., Gurman, A., Hunn, T., Lee, D., Milan, A., Pham, T., Rallos, G., Razjigaev, A., Rowntree, T., Kumar, V., Zhuang, Z., Lehnert, C., Reid, I., Corke, P., and Leitner, J. (2018). Cartman: The low-cost Cartesian Manipulator that won the Amazon Robotics Challenge. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 7757–7764). Brisbane: IEEE. http://doi.org/10.1109/ICRA.2018.8463191
View More -
Dropout Sampling for Robust Object Detection in Open-Set Conditions
Miller, D., Nicholson, L., Dayoub, F., & Sunderhauf, N. (2018). Dropout Sampling for Robust Object Detection in Open-Set Conditions. Proceedings - IEEE International Conference on Robotics and Automation, 3243–3249. https://doi.org/10.1109/ICRA.2018.8460700
View More -
Semantic Segmentation from Limited Training Data
Milan, A., Pham, T., Vijay, K., Morrison, D., Tow, A. W., Liu, L., Erskine, J., Grinover, R., Gurman, A., Hunn, T., Kelly-Boxall, K., Lee, D., McTaggart, M., Rallos, G., Razjigaev, A., Rowntree, T., Shen, T., Smith, R., Wade-McCue, S., Zhuang, Z., Lehnert, C., Lin, G., Reid, I., Corke, P., and Leitner, J. (2018). Semantic Segmentation from Limited Training Data. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1908–1915). Brisbane: IEEE. http://doi.org/10.1109/ICRA.2018.8461082
View More -
Efficacy of Mechanical Weeding Tools: a study into alternative weed management strategies enabled by robotics
McCool, C. S., Beattie, J., Firn, J., Lehnert, C., Kulk, J., Bawden, O., Russell, R., & Perez, T. (2018). Efficacy of Mechanical Weeding Tools: a study into alternative weed management strategies enabled by robotics. IEEE Robotics and Automation Letters, 1–1. http://doi.org/10.1109/LRA.2018.2794619
View More -
Addressing Challenging Place Recognition Tasks using Generative Adversarial Networks
Latif, Y., Garg, R., Milford, M., & Reid, I. (2018). Addressing challenging place recognition tasks using generative adversarial networks. Proceedings - IEEE International Conference on Robotics and Automation, 2349–2355. https://doi.org/10.1109/ICRA.2018.8461081
View More -
Multi-Modal Trip Hazard Affordance Detection On Construction Sites
McMahon, S., Sunderhauf, N., Upcroft, B., & Milford, M. (2018). Multimodal Trip Hazard Affordance Detection on Construction Sites. IEEE Robotics and Automation Letters, 3(1), 1–8. http://doi.org/10.1109/LRA.2017.2719763
View More -
Image Captioning and Visual Question Answering Based on Attributes and External Knowledge
Wu, Q., Shen, C., Wang, P., Dick, A., & Van Den Hengel, A. (2018). Image Captioning and Visual Question Answering Based on Attributes and External Knowledge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1367–1381. https://doi.org/10.1109/TPAMI.2017.2708709
View More
Journal Articles
-
Monocular Depth Estimation with Augmented Ordinal Depth Relationships
Cao, Y., Zhao, T., Xian, K., Shen, C., Cao, Z., & Xu, S. (2018). Monocular Depth Estimation with Augmented Ordinal Depth Relationships. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2018.2877944
View More -
An adaptive localization system for image storage and localization latency requirements
Mao, J., Hu, X., & Milford, M. (2018). An adaptive localization system for image storage and localization latency requirements. Robotics and Autonomous Systems, 107, 246–261. http://doi.org/10.1016/J.ROBOT.2018.06.007
View More -
Quickest Detection of Intermittent Signals With Application to Vision-Based Aircraft Detection
James, J., Ford, J. J., & Molloy, T. L. (2018). Quickest Detection of Intermittent Signals With Application to Vision-Based Aircraft Detection. IEEE Transactions on Control Systems Technology, 1–8. http://doi.org/10.1109/TCST.2018.2872468
View More -
Globally-Optimal Inlier Set Maximisation for Camera Pose and Correspondence Estimation
Campbell, D. J., Petersson, L., Kneip, L., & Li, H. (2018). Globally-Optimal Inlier Set Maximisation for Camera Pose and Correspondence Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2018.2848650
View More -
Dense 3D Face Correspondence
Gilani, S. Z., Mian, A., Shafait, F., & Reid, I. (2018). Dense 3D Face Correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(7), 1584–1598. https://doi.org/10.1109/TPAMI.2017.2725279
View More -
Coresets for Triangulation
Gilani, S. Z., Mian, A., Shafait, F., & Reid, I. (2018). Dense 3D Face Correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(7), 1584–1598. https://doi.org/10.1109/TPAMI.2017.2725279
View More -
The Role of Symmetry in Rigidity Analysis: A Tool for Network Localisation and Formation Control
Stacey, G., & Mahony, R. (2018). The Role of Symmetry in Rigidity Analysis: A Tool for Network Localization and Formation Control. IEEE Transactions on Automatic Control, 63(5), 1313–1328. https://doi.org/10.1109/TAC.2017.2747760
View More -
Incorporating Network Built-in Priors in Weakly-supervised Semantic Segmentation
Saleh, F. S., Aliakbarian, M. S., Salzmann, M., Petersson, L., Alvarez, J. M., & Gould, S. (2018). Incorporating Network Built-in Priors in Weakly-Supervised Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1382–1396. https://doi.org/10.1109/TPAMI.2017.2713785
View More -
Guaranteed Outlier Removal for Point Cloud Registration with Correspondences
Guaranteed Outlier Removal for Point Cloud Registration with Correspondences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12), 2868–2882. https://doi.org/10.1109/TPAMI.2017.2773482
View More -
Structured Learning of Tree Potentials in CRF for Image Segmentation
Liu, F., Lin, G., Qiao, R., & Shen, C. (2017). Structured Learning of Tree Potentials in CRF for Image Segmentation. IEEE Transactions on Neural Networks and Learning Systems, PP(99), 1–7. http://doi.org/10.1109/TNNLS.2017.2690453 *In Press
View More -
Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods
Harandi, M., Salzmann, M., & Hartley, R. (2018). Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(1), 48–62. https://doi.org/10.1109/TPAMI.2017.2655048
View More -
Not All Negatives Are Equal: Learning to Track With Multiple Background Clusters
Zhu, G., Porikli, F., & Li, H. (2018). Not All Negatives Are Equal: Learning to Track With Multiple Background Clusters. IEEE Transactions on Circuits and Systems for Video Technology, 28(2), 314–326. http://doi.org/10.1109/TCSVT.2016.2615518
View More -
Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine
Saha, S. K., Fernando, B., Cuadros, J., Xiao, D., & Kanagasingam, Y. (2018). Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine. Journal of Digital Imaging, 31(6), 869–878. http://doi.org/10.1007/s10278-018-0084-9
View More -
Embedding Bilateral Filter in Least Squares for Efficient Edge-preserving Image Smoothing
Liu, W., Zhang, P., Chen, X., Shen, C., Huang, X., & Yang, J. (2018). Embedding Bilateral Filter in Least Squares for Efficient Edge-preserving Image Smoothing. IEEE Transactions on Circuits and Systems for Video Technology, 1–1. http://doi.org/10.1109/TCSVT.2018.2890202
View More -
Robust and Efficient Relative Pose With a Multi-Camera System for Autonomous Driving in Highly Dynamic Environments
Liu, L., Li, H., Dai, Y., & Pan, Q. (2018). Robust and efficient relative pose with a Multi-Camera system for autonomous driving in highly dynamic environments. IEEE Transactions on Intelligent Transportation Systems, 19(8), 2432–2444. https://doi.org/10.1109/TITS.2017.2749409
View More -
Reading car license plates using deep neural networks
Li, H., Wang, P., You, M., & Shen, C. (2018). Reading car license plates using deep neural networks. Image and Vision Computing, 72, 14–23. http://doi.org/10.1016/J.IMAVIS.2018.02.002
View More -
Exploring Context with Deep Structured Models for Semantic Segmentation
Lin, G., Shen, C., van den Hengel, A., & Reid, I. (2018). Exploring Context with Deep Structured Models for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1352–1366. http://doi.org/10.1109/TPAMI.2017.2708714
View More -
Drones count wildlife more accurately and precisely than humans
Hodgson, J. C., Mott, R., Baylis, S. M., Pham, T. T., Wotherspoon, S., Kilpatrick, A. D., Ramesh, R.S., Reid, I., Terauds, A., & Koh, L. P. (2018). Drones count wildlife more accurately and precisely than humans. Methods in Ecology and Evolution, 9(5), 1160–1167. http://doi.org/10.1111/2041-210X.12974
View More -
Semisupervised and Weakly Supervised Road Detection Based on Generative Adversarial Networks
Han, X., Lu, J., Zhao, C., You, S., & Li, H. (2018). Semisupervised and Weakly Supervised Road Detection Based on Generative Adversarial Networks. IEEE Signal Processing Letters, 25(4), 551–555. http://doi.org/10.1109/LSP.2018.2809685
View More -
Automatic Image Cropping for Visual Aesthetic Enhancement Using Deep Neural Networks and Cascaded Regression
Guo, G., Wang, H., Shen, C., Yan, Y., & Liao, H.-Y. M. (2018). Automatic Image Cropping for Visual Aesthetic Enhancement Using Deep Neural Networks and Cascaded Regression. IEEE Transactions on Multimedia, 20(8), 2073–2085. http://doi.org/10.1109/TMM.2018.2794262
View More -
Action Recognition with Dynamic Image Networks
Bilen, H., Fernando, B., Gavves, E., & Vedaldi, A. (2018). Action Recognition with Dynamic Image Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12), 2799–2813. http://doi.org/10.1109/TPAMI.2017.2769085
View More -
Searching for Representative Modes on Hypergraphs for Robust Geometric Model Fitting
Wang, H., Xiao, G., Yan, Y., & Suter, D. (2019). Searching for Representative Modes on Hypergraphs for Robust Geometric Model Fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(3), 697–711. https://doi.org/10.1109/TPAMI.2018.2803173
View More -
Semantics-Aware Visual Object Tracking
Yao, R., Lin, G., Shen, C., Zhang, Y., & Shi, Q. (2019). Semantics-aware visual object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 29(6), 1687–1700. https://doi.org/10.1109/TCSVT.2018.2848358
View More -
Learning Context Flexible Attention Model for Long-Term Visual Place Recognition
Chen, Z., Liu, L., Sa, I., Ge, Z., & Chli, M. (2018). Learning Context Flexible Attention Model for Long-Term Visual Place Recognition. IEEE Robotics and Automation Letters, 3(4), 4015–4022. http://doi.org/10.1109/LRA.2018.2859916
View More -
Unsupervised Domain Adaptation Using Robust Class-Wise Matching
Zhang, L., Wang, P., Wei, W., Lu, H., Shen, C., Van Den Hengel, A., & Zhang, Y. (2019). Unsupervised Domain Adaptation Using Robust Class-Wise Matching. IEEE Transactions on Circuits and Systems for Video Technology, 29(5), 1339–1349. https://doi.org/10.1109/TCSVT.2018.2842206
View More -
QuadricSLAM: Dual Quadrics From Object Detections as Landmarks in Object-Oriented SLAM
Nicholson, L., Milford, M., & Sunderhauf, N. (2019). QuadricSLAM: Dual quadrics from object detections as landmarks in object-oriented SLAM. IEEE Robotics and Automation Letters, 4(1), 1–8. https://doi.org/10.1109/LRA.2018.2866205
View More -
Relative Pose Based Redundancy Removal: Collaborative RGB-D Data Transmission in Mobile Visual Sensor Networks
Wang, X., Şekercioğlu, Y., Drummond, T., Frémont, V., Natalizio, E., & Fantoni, I. (2018). Relative Pose Based Redundancy Removal: Collaborative RGB-D Data Transmission in Mobile Visual Sensor Networks. Sensors, 18(8), 2430. http://doi.org/10.3390/s18082430
View More -
Approximate Fisher Information Matrix to Characterise the Training of Deep Neural Networks
Liao, Z., Drummond, T., Reid, I., & Carneiro, G. (2018). Approximate Fisher Information Matrix to Characterise the Training of Deep Neural Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. http://doi.org/10.1109/TPAMI.2018.2876413
View More -
A review of deep learning in the study of materials degradation
Nash, W., Drummond, T., & Birbilis, N. (2018). A review of deep learning in the study of materials degradation. Npj Materials Degradation, 2(1), 37. http://doi.org/10.1038/s41529-018-0058-x
View More -
An Extended Filtered Channel Framework for Pedestrian Detection
You, M., Zhang, Y., Shen, C., & Zhang, X. (2018). An Extended Filtered Channel Framework for Pedestrian Detection. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1640–1651. https://doi.org/10.1109/TITS.2018.2807199
View More -
An Embarrassingly Simple Approach to Visual Domain Adaptation
Lu, H., Shen, C., Cao, Z., Xiao, Y., & van den Hengel, A. (2018). An Embarrassingly Simple Approach to Visual Domain Adaptation. IEEE Transactions on Image Processing, 27(7), 3403–3417. https://doi.org/10.1109/TIP.2018.2819503
View More -
Cluster Sparsity Field: An Internal Hyperspectral Imagery Prior for Reconstruction
Zhang, L., Wei, W., Zhang, Y., Shen, C., van den Hengel, A., & Shi, Q. (2018). Cluster Sparsity Field: An Internal Hyperspectral Imagery Prior for Reconstruction. International Journal of Computer Vision, 126(8), 797–821. https://doi.org/10.1007/s11263-018-1080-8
View More -
Multi-label learning based deep transfer neural network for facial attribute classification
Zhuang, N., Yan, Y., Chen, S., Wang, H., & Shen, C. (2018). Multi-label learning based deep transfer neural network for facial attribute classification. Pattern Recognition, 80, 225–240. https://doi.org/10.1016/J.PATCOG.2018.03.018
View More -
Multi-Task Structure-aware Context Modeling for Robust Keypoint-based Object Tracking
Li, X., Zhao, L., Ji, W., Wu, Y., Wu, F., Yang, M.-H., Dacheng, T., Reid, I. (2018). Multi-Task Structure-aware Context Modeling for Robust Keypoint-based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2018.2818132 *In Press
View More -
The limits and potentials of deep learning for robotics
Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B., Abbeel, P., Burgard, W., Milford, M., & Corke, P. (2018). The limits and potentials of deep learning for robotics. The International Journal of Robotics Research, 37(4–5), 405–420. http://doi.org/10.1177/0278364918770733
View More -
Automating analysis of vegetation with computer vision: Cover estimates and classification
McCool, C., Beattie, J., Milford, M., Bakker, J. D., Moore, J. L., & Firn, J. (2018). Automating analysis of vegetation with computer vision: Cover estimates and classification. Ecology and Evolution, 8(12), 6005–6015. http://doi.org/10.1002/ece3.4135
View More -
A rapidly deployable classification system using visual data for the application of precision weed management
Hall, D., Dayoub, F., Perez, T., & McCool, C. (2018). A rapidly deployable classification system using visual data for the application of precision weed management. Computers and Electronics in Agriculture, 148, 107–120. http://doi.org/10.1016/J.COMPAG.2018.02.023
View More -
Measures of incentives and confidence in using a social robot
Robinson, N. L., Connolly, J., Johnson, G. M., Kim, Y., Hides, L., & Kavanagh, D. J. (2018). Measures of incentives and confidence in using a social robot. Science Robotics, 3(21), eaat6963. http://doi.org/10.1126/scirobotics.aat6963
View More -
Glare-free retinal imaging using a portable light field fundus camera
Palmer, D. W., Coppin, T., Rana, K., Dansereau, D. G., Suheimat, M., Maynard, M. Atchison, D. A., Roberts, J., Crawford, R., & Jaiprakash, A. (2018). Glare-free retinal imaging using a portable light field fundus camera. Biomedical Optics Express, 9(7), 3178. http://doi.org/10.1364/BOE.9.003178
View More -
Learning to Detect Aircraft for Long-Range Vision-Based Sense-and-Avoid Systems
James, J., Ford, J. J., & Molloy, T. L. (2018). Learning to Detect Aircraft for Long-Range Vision-Based Sense-and-Avoid Systems. IEEE Robotics and Automation Letters, 3(4), 4383–4390. http://doi.org/10.1109/LRA.2018.2867237
View More -
Leveraging variable sensor spatial acuity with a homogeneous, multi-scale place recognition framework
Jacobson, A., Chen, Z., & Milford, M. (2018). Leveraging variable sensor spatial acuity with a homogeneous, multi-scale place recognition framework. Biological Cybernetics, 1–17. http://doi.org/10.1007/s00422-017-0745-7
View More -
Output regulation for systems on matrix Lie-groups
de Marco, S., Marconi, L., Mahony, R., & Hamel, T. (2018). Output regulation for systems on matrix Lie-groups. Automatica, 87, 8–16. https://doi.org/10.1016/J.AUTOMATICA.2017.08.006
View More -
Rhythmic Representations: Learning Periodic Patterns for Scalable Place Recognition at a Sublinear Storage Cost.
Yu, L., Jacobson, A., & Milford, M. (2018). Rhythmic Representations: Learning Periodic Patterns for Scalable Place Recognition at a Sublinear Storage Cost. IEEE Robotics and Automation Letters, 3(2), 811–818. http://doi.org/10.1109/LRA.2018.2792144
View More -
Multimodal Trip Hazard Affordance Detection on Construction Sites
McMahon, S., Sunderhauf, N., Upcroft, B., & Milford, M. (2018). Multimodal Trip Hazard Affordance Detection on Construction Sites. IEEE Robotics and Automation Letters, 3(1), 1–8. http://doi.org/10.1109/LRA.2017.2719763
View More -
Special issue on deep learning in robotics
Sünderhauf, N., Leitner, J., Upcroft, B., & Roy, N. (2018, April 27). Special issue on deep learning in robotics. The International Journal of Robotics Research. SAGE PublicationsSage UK: London, England. http://doi.org/10.1177/0278364918769189
View More -
Multi-Modal Trip Hazard Affordance Detection On Construction Sites
McMahon, S., Sunderhauf, N., Upcroft, B., & Milford, M. (2018). Multimodal Trip Hazard Affordance Detection on Construction Sites. IEEE Robotics and Automation Letters, 3(1), 1–8. http://doi.org/10.1109/LRA.2017.2719763
View More -
Image Captioning and Visual Question Answering Based on Attributes and External Knowledge
Wu, Q., Shen, C., Wang, P., Dick, A., & Van Den Hengel, A. (2018). Image Captioning and Visual Question Answering Based on Attributes and External Knowledge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1367–1381. https://doi.org/10.1109/TPAMI.2017.2708709
View More
Conference Papers
-
Learning to Predict Crisp Boundaries
Deng R., Shen C., Liu S., Wang H., Liu X. (2018) Learning to Predict Crisp Boundaries. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11210. Springer, Cham. https://doi.org/10.1007/978-3-030-01231-1_35
View More -
Robust Fitting in Computer Vision: Easy or Hard?
Chin TJ., Cai Z., Neumann F. (2018) Robust Fitting in Computer Vision: Easy or Hard?. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11216. Springer, Cham. https://doi.org/10.1007/978-3-030-01258-8_43
View More -
Deterministic Consensus Maximization with Biconvex Programming
Cai Z., Chin TJ., Le H., Suter D. (2018) Deterministic Consensus Maximization with Biconvex Programming. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11216. Springer, Cham. https://doi.org/10.1007/978-3-030-01258-8_42
View More -
A Binary Optimization Approach for Constrained K-Means Clustering
Le H.M., Eriksson A., Do TT., Milford M. (2019) A Binary Optimization Approach for Constrained K-Means Clustering. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_24
View More -
Traversing Latent Space using Decision Ferns
Zuo Y., Avraham G., Drummond T. (2019) Traversing Latent Space Using Decision Ferns. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_37
View More -
Stereo Computation for a Single Mixture Image
Zhong Y., Dai Y., Li H. (2018) Stereo Computation for a Single Mixture Image. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11213. Springer, Cham. https://doi.org/10.1007/978-3-030-01240-3_2
View More -
Learning Free-Form Deformations for 3D Object Reconstruction
Jack, D., Pontes, J. K., Sridharan, S., Fookes, C., Shirazi, S., Maire, F., & Eriksson, A. (2019). Learning Free-Form Deformations for 3D Object Reconstruction. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11362 LNCS, 317–333. https://doi.org/10.1007/978-3-030-20890-5_21
View More -
Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction
Zhan, H., Garg, R., Weerasekera, C. S., Li, K., Agarwal, H., & Reid, I. M. (2018). Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 340–349). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00043
View More -
Discrimination-aware channel pruning for deep neural networks
Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., & Zhu, J. (2018). Discrimination-aware Channel Pruning for Deep Neural Networks. Advances in Neural Information Processing Systems, 2018-December, 875–886.
View More -
OpenSeqSLAM2.0: An Open Source Toolbox for Visual Place Recognition Under Changing Conditions
Talbot, B., Garg, S., & Milford, M. (2018). OpenSeqSLAM2.0: An Open Source Toolbox for Visual Place Recognition Under Changing Conditions. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 7758–7765). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8593761
View More -
Scalable Deep k-Subspace Clustering
Zhang T., Ji P., Harandi M., Hartley R., Reid I. (2019) Scalable Deep k-Subspace Clustering. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_30
View More -
Continuous-Time Intensity Estimation Using Event Cameras
Scheerlinck C., Barnes N., Mahony R. (2019) Continuous-Time Intensity Estimation Using Event Cameras. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_20
View More -
Action Anticipation by Predicting Future Dynamic Images
Rodriguez C., Fernando B., Li H. (2019) Action Anticipation by Predicting Future Dynamic Images. In: Leal-Taixé L., Roth S. (eds) Computer Vision – ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science, vol 11131. Springer, Cham. https://doi.org/10.1007/978-3-030-11015-4_10
View More -
Assisted Control for Semi-Autonomous Power Infrastructure Inspection Using Aerial Vehicles
*McFadyen, A., Dayoub, F., Martin, S., Ford, J., & Corke, P. (2018). Assisted Control for Semi-Autonomous Power Infrastructure Inspection Using Aerial Vehicles. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5719–5726). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8593529
View More -
Closing the Loop for Robotic Grasping: A Real-time, Generative Grasp Synthesis Approach
Morrison, D., Corke, P., & Leitner, J. (2018). Closing the Loop for Robotic Grasping: A Real-time, Generative Grasp Synthesis Approach. Retrieved from http://arxiv.org/abs/1804.05172
View More -
Efficient Subpixel Refinement with Symbolic Linear Predictors
Lui, V., Geeves, J., Yii, W., & Drummond, T. (2018). Efficient Subpixel Refinement with Symbolic Linear Predictors. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8165–8173). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00852
View More -
Structure Aware SLAM Using Quadrics and Planes
Hosseinzadeh M., Latif Y., Pham T., Suenderhauf N., Reid I. (2019) Structure Aware SLAM Using Quadrics and Planes. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_26
View More -
Feature Map Filtering: Improving Visual Place Recognition with Convolutional Calibration
Hausler, S., Jacobson, A., & Milford, M. (2018). Feature Map Filtering: Improving Visual Place Recognition with Convolutional Calibration. Retrieved from http://arxiv.org/abs/1810.12465
View More -
LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics
Garg, S., Suenderhauf, N., & Milford, M. (2018). LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics. Retrieved from http://arxiv.org/abs/1804.05526
View More -
An End-to-End TextSpotter with Explicit Alignment and Attention
He, T., Tian, Z., Huang, W., Shen, C., Qiao, Y., & Sun, C. (2018). An End-to-End TextSpotter with Explicit Alignment and Attention. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5020–5029). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00527
View More -
Don’t Look Back: Robustifying Place Categorization for Viewpoint- and Condition-Invariant Place Recognition
Garg, S., Suenderhauf, N., & Milford, M. (2018). Don’t Look Back: Robustifying Place Categorization for Viewpoint- and Condition-Invariant Place Recognition. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3645–3652). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8461051
View More -
ENG: End-to-end Neural Geometry for Robust Depth and Pose Estimation using CNNs
Dharmasiri T., Spek A., Drummond T. (2019) ENG: End-to-End Neural Geometry for Robust Depth and Pose Estimation Using CNNs. In: Jawahar C., Li H., Mori G., Schindler K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science, vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_39
View More -
Neural Algebra of Classifiers
*Cruz, R. S., Fernando, B., Cherian, A., & Gould, S. (2018). Neural Algebra of Classifiers. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 729–737). IEEE. https://doi.org/10.1109/WACV.2018.00085
View More -
Towards vision-based manipulation of plastic materials
*Cherubini, A., Leitner, J., Ortenzi, V., & Corke, P. (2018). Towards vision-based manipulation of plastic materials. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 485–490). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8594108
View More -
Learning Deployable Navigation Policies at Kilometer Scale from a Single Traversal
Bruce, J., Sünderhauf, N., Mirowski, P., Hadsell, R., & Milford, M. (2018). Learning Deployable Navigation Policies at Kilometer Scale from a Single Traversal. Retrieved from http://arxiv.org/abs/1807.05211
View More -
Training Deep Neural Networks for Visual Servoing
*Bateux, Q., Marchand, E., Leitner, J., Chaumette, F., & Corke, P. (2018). Training Deep Neural Networks for Visual Servoing. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–8). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8461068
View More -
VIENA 2: A Driving Anticipation Dataset
Aliakbarian, M. S., Saleh, F. S., Salzmann, M., Fernando, B., Petersson, L., & Andersson, L. (2019). VIENA2: A Driving Anticipation Dataset. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11361 LNCS, 449–466. https://doi.org/10.1007/978-3-030-20887-5_28
View More -
Model-free and learning-free grasping by Local Contact Moment matching
*Adjigble, M., Marturi, N., Ortenzi, V., Rajasekaran, V., Corke, P., & Stolkin, R. (2018). Model-free and learning-free grasping by Local Contact Moment matching. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2933–2940). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8594226
View More -
Deja vu: Scalable Place Recognition Using Mutually Supportive Feature Frequencies
Jacobson, A., Scheirer, W., & Milford, M. (2017). Déjà vu: Scalable place recognition using mutually supportive feature frequencies. IEEE International Conference on Intelligent Robots and Systems, 2017-September, 6654–6661. https://doi.org/10.1109/IROS.2017.8206580
View More -
Design of a multi-modal end-effector and grasping system- How integrated design helped win the Amazon Robotics Challenge
Kelly-Boxall, N., Morrison, D., Wade-McCue, S., Corke, P., & Leitner, J. (2018). Design of a multi-modal end-effector and grasping system- How integrated design helped win the amazon robotics challenge. Australasian Conference on Robotics and Automation, ACRA, 2018-December.
View More -
On the structure of kinematic systems with complete symmetry
Trumpf, J., Mahony, R., & Hamel, T. (2019). On the structure of kinematic systems with complete symmetry. Proceedings of the IEEE Conference on Decision and Control, 2018-December, 1276–1280. https://doi.org/10.1109/CDC.2018.8619718
View More -
Seeing Deeply and Bidirectionally: A Deep Learning Approach for Single Image Reflection Removal
Yang J., Gong D., Liu L., Shi Q. (2018) Seeing Deeply and Bidirectionally: A Deep Learning Approach for Single Image Reflection Removal. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11207. Springer, Cham. https://doi.org/10.1007/978-3-030-01219-9_40
View More -
Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge
Teney, D., Anderson, P., He, X., & Hengel, A. van den. (2018). Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4223–4232). IEEE. http://doi.org/10.1109/CVPR.2018.00444
View More -
Deblurring Natural Image Using Super-Gaussian Fields
Liu Y., Dong W., Gong D., Zhang L., Shi Q. (2018) Deblurring Natural Image Using Super-Gaussian Fields. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11205. Springer, Cham. https://doi.org/10.1007/978-3-030-01246-5_28
View More -
Adversarial Training of Variational Auto-Encoders for High Fidelity Image Generation
Khan, S. H., Hayat, M., & Barnes, N. (2018). Adversarial Training of Variational Auto-Encoders for High Fidelity Image Generation. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1312–1320). Lake Tahoe, United States: IEEE. https://doi.org/10.1109/WACV.2018.00148
View More -
Semi-dense 3D Reconstruction with a Stereo Event Camera
Zhou Y., Gallego G., Rebecq H., Kneip L., Li H., Scaramuzza D. (2018) Semi-dense 3D Reconstruction with a Stereo Event Camera. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11205. Springer, Cham. https://doi.org/10.1007/978-3-030-01246-5_15
View More -
3D Geometry-Aware Semantic Labeling of Outdoor Street Scenes
*Zhong, Y., Dai, Y., & Li, H. (2018). 3D Geometry-Aware Semantic Labeling of Outdoor Street Scenes. In 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 2343–2349). IEEE. http://doi.org/10.1109/ICPR.2018.8545378
View More -
Open-World Stereo Video Matching with Deep RNN
Zhong Y., Li H., Dai Y. (2018) Open-World Stereo Video Matching with Deep RNN. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11206. Springer, Cham. https://doi.org/10.1007/978-3-030-01216-8_7
View More -
Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective
*Zhang, J., Zhang, T., Daf, Y., Harandi, M., & Hartley, R. (2018). Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9029–9038). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00941
View More -
Deep Auto-Set: A Deep Auto-Encoder-Set Network for Activity Recognition Using Wearables
Varamin, A. A., Abbasnejad, E., Shi, Q., Ranasinghe, D. C., & Rezatofighi, H. (2018). Deep Auto-Set: A Deep Auto-Encoder-Set Network for Activity Recognition Using Wearables (Vol. 18). Retrieved from https://doi.org/10.475/123_4
View More -
Robust Visual Odometry in Underwater Environment
*Zhang, J., Ila, V., & Kneip, L. (2018). Robust Visual Odometry in Underwater Environment. In 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO) (pp. 1–9). Kobe, Japan: IEEE. http://doi.org/10.1109/OCEANSKOBE.2018.8559452
View More -
Goal-Oriented Visual Question Generation via Intermediate Rewards
Zhang, J., Wu, Q., Shen, C., Zhang, J., Lu, J., & van den Hengel, A. (2018). Goal-Oriented Visual Question Generation via Intermediate Rewards. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11209 LNCS, 189–204. https://doi.org/10.1007/978-3-030-01228-1_12
View More -
Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes
*Yu, X., Fernando, B., Hartley, R., & Porikli, F. (2018). Super-Resolving Very Low-Resolution Face Images with Supplementary Attributes. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 908–917). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00101
View More -
Face Super-Resolution Guided by Facial Component Heatmaps
Yu X., Fernando B., Ghanem B., Porikli F., Hartley R. (2018) Face Super-Resolution Guided by Facial Component Heatmaps. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11213. Springer, Cham. https://doi.org/10.1007/978-3-030-01240-3_14
View More -
Learning Discriminative Video Representations Using Adversarial Perturbations
Wang J., Cherian A. (2018) Learning Discriminative Video Representations Using Adversarial Perturbations. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11208. Springer, Cham. https://doi.org/10.1007/978-3-030-01225-0_42
View More -
Structure from Recurrent Motion: From Rigidity to Recurrency
*Li, X., Li, H., Joo, H., Liu, Y., & Sheikh, Y. (2018). Structure from Recurrent Motion: From Rigidity to Recurrency. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3032–3040). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00320
View More -
Kernel Support Vector Machines and Convolutional Neural Networks
Jiang, S., Hartley, R., & Fernando, B. (2018). Kernel Support Vector Machines and Convolutional Neural Networks. In 2018 Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–7). Canberra, Australia: IEEE. http://doi.org/10.1109/DICTA.2018.8615840
View More -
Semi-Supervised SLAM: Leveraging Low-Cost Sensors on Underground Autonomous Vehicles for Position Tracking
Jacobson, A., Zeng, F., Smith, D., Boswell, N., Peynot, T., & Milford, M. (2018). Semi-Supervised SLAM: Leveraging Low-Cost Sensors on Underground Autonomous Vehicles for Position Tracking. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3970–3977). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8593750
View More -
Parallel Attention: A Unified Framework for Visual Object Discovery Through Dialogs and Queries
Zhuang, B., Wu, Q., Shen, C., Reid, I., & Hengel, A. van den. (2018). Parallel Attention: A Unified Framework for Visual Object Discovery Through Dialogs and Queries. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4252–4261). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00447
View More -
Towards Effective Low-Bitwidth Convolutional Neural Networks
Zhuang, B., Shen, C., Tan, M., Liu, L., & Reid, I. (2018). Towards Effective Low-Bitwidth Convolutional Neural Networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7920–7928). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00826
View More -
Are You Talking to Me? Reasoned Visual Dialog Generation Through Adversarial Learning
Wu, Q., Wang, P., Shen, C., Reid, I., & Hengel, A. van den. (2018). Are You Talking to Me? Reasoned Visual Dialog Generation Through Adversarial Learning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6106–6115). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00639
View More -
Bayesian Semantic Instance Segmentation in Open Set World
Pham, T., Vijay Kumar, B. G., Do, T. T., Carneiro, G., & Reid, I. (2018). Bayesian semantic instance segmentation in open set world. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11214 LNCS, 3–18. https://doi.org/10.1007/978-3-030-01249-6_1
View More -
Training Medical Image Analysis Systems like Radiologists
Maicas G., Bradley A.P., Nascimento J.C., Reid I., Carneiro G. (2018) Training Medical Image Analysis Systems like Radiologists. In: Frangi A., Schnabel J., Davatzikos C., Alberola-López C., Fichtinger G. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, vol 11070. Springer, Cham. https://doi.org/10.1007/978-3-030-00928-1_62
View More -
Visual Question Answering with Memory-Augmented Networks
Ma, C., Shen, C., Dick, A., Wu, Q., Wang, P., Hengel, A. van den, & Reid, I. (2018). Visual Question Answering with Memory-Augmented Networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6975–6984). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00729
View More -
Deep Regression Tracking with Shrinkage Loss
Lu X., Ma C., Ni B., Yang X., Reid I., Yang MH. (2018) Deep Regression Tracking with Shrinkage Loss. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11218. Springer, Cham. https://doi.org/10.1007/978-3-030-01264-9_22
View More -
Efficient Dense Point Cloud Object Reconstruction Using Deformation Vector Fields
Li K., Pham T., Zhan H., Reid I. (2018) Efficient Dense Point Cloud Object Reconstruction Using Deformation Vector Fields. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11216. Springer, Cham. https://doi.org/10.1007/978-3-030-01258-8_31
View More -
Multi-modal Cycle-Consistent Generalized Zero-Shot Learning
Felix R., Vijay Kumar B.G., Reid I., Carneiro G. (2018) Multi-modal Cycle-Consistent Generalized Zero-Shot Learning. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol 11210. Springer, Cham. https://doi.org/10.1007/978-3-030-01231-1_2
View More -
AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection
Do, T.-T., Nguyen, A., & Reid, I. (2018). AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–5). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8460902
View More -
Visual Grounding via Accumulated Attention
Deng, C., Wu, Q., Wu, Q., Hu, F., Lyu, F., & Tan, M. (2018). Visual Grounding via Accumulated Attention. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7746–7755). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00808
View More -
Vision Based Forward Sensitive Reactive Control for a Quadrotor VTOL
Stevens, J.-L., & Mahony, R. (2018). Vision Based Forward Sensitive Reactive Control for a Quadrotor VTOL. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5232–5238). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8593606
View More -
Calibrating Light-Field Cameras Using Plenoptic Disc Features
O’brien, S., Trumpf, J., Ila, V., & Mahony, R. (2018). Calibrating Light-Field Cameras Using Plenoptic Disc Features. In 2018 International Conference on 3D Vision (3DV) (pp. 286–294). Verona, Italy: IEEE. http://doi.org/10.1109/3DV.2018.00041
View More -
A Geometric Observer for Scene Reconstruction Using Plenoptic Cameras
O’Brien, S. G. P., Trumpf, J., Ila, V., & Mahony, R. (2018). A Geometric Observer for Scene Reconstruction Using Plenoptic Cameras. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 557–564). Florida, United States: IEEE. http://doi.org/10.1109/CDC.2018.8618954
View More -
Homography estimation of a moving planar scene from direct point correspondence
De Marco, S., Hua, M. D., Mahony, R., & Hamel, T. (2019). Homography estimation of a moving planar scene from direct point correspondence. Proceedings of the IEEE Conference on Decision and Control, 2018-December, 565–570. https://doi.org/10.1109/CDC.2018.8619386
View More -
Video Representation Learning Using Discriminative Pooling
Wang, J., Cherian, A., Porikli, F., & Gould, S. (2018). Video Representation Learning Using Discriminative Pooling. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1149–1158). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00126
View More -
Non-linear Temporal Subspace Representations for Activity Recognition
Cherian, A., Sra, S., Gould, S., & Hartley, R. (2018). Non-linear Temporal Subspace Representations for Activity Recognition. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2197–2206). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00234
View More -
One-class Gaussian process regressor for quality assessment of transperineal ultrasound images
Camps, S. M., Houben, T., Fontanarosa, D., Edwards, C., Antico, M., Dunnhofer, M., Martens, E.G.H.J, Baeza, J.A., Vanneste, B.G.L., van Limbergen, E.J., de W., Peter, H.N., Verhaegen, F., & Carneiro, G. (2018). One-class Gaussian process regressor for quality assessment of transperineal ultrasound images. In International Conference on Medical Imaging with Deep Learning (MIDL). Amsterdam. Retrieved from https://eprints.qut.edu.au/120113/
View More -
Vision-and-Language Navigation: Interpreting Visually-Grounded Navigation Instructions in Real Environments
Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sunderhauf, N., Reid, I., Gould, S., & van den Hengel, A. (2018). Vision-and-Language Navigation: Interpreting Visually-Grounded Navigation Instructions in Real Environments. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3674–3683). IEEE. http://doi.org/10.1109/CVPR.2018.00387
View More -
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., & Zhang, L. (2018). Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6077–6086). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00636
View More -
Practical Motion Segmentation for Urban Street View Scenes
Rubino, C., Del Bue, A., & Chin, T.-J. (2018). Practical Motion Segmentation for Urban Street View Scenes. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1879–1886). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8460993
View More -
VITAL: VIsual Tracking via Adversarial Learning
Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Lau, Rynson W.H., & Yang, M.-H. (2018). VITAL: VIsual Tracking via Adversarial Learning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8990–8999). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00937
View More -
A Fast Resection-Intersection Method for the Known Rotation Problem
Zhang, Q., Chin, T.-J., & Le, H. M. (2018). A Fast Resection-Intersection Method for the Known Rotation Problem. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3012–3021). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00318
View More -
Rotation Averaging and Strong Duality
Eriksson, A., Olsson, C., Kahl, F., & Chin, T.-J. (2018). Rotation Averaging and Strong Duality. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 127–135). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00021
View More -
ArthroSLAM: Multi-Sensor Robust Visual Localization for Minimally Invasive Orthopedic Surgery
Marmol, A., Corke, P., & Peynot, T. (2018). ArthroSLAM: Multi-Sensor Robust Visual Localization for Minimally Invasive Orthopedic Surgery. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3882–3889). Madrid, Spain: IEEE. https://doi.org/10.1109/IROS.2018.8593501
View More -
Collaborative Planning for Mixed-Autonomy Lane Merging
Bansal, S., Cosgun, A., Nakhaei, A., & Fujimura, K. (2018). Collaborative Planning for Mixed-Autonomy Lane Merging. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4449–4455). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8594197
View More -
CReaM: Condensed Real-time Models for Depth Prediction using Convolutional Neural Networks
Spek, A., Dharmasiri, T., & Drummond, T. (2018). CReaM: Condensed Real-time Models for Depth Prediction using Convolutional Neural Networks. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 540–547). Madrid, Spain: IEEE. http://doi.org/10.1109/IROS.2018.8594243
View More -
Deep Metric Learning and Image Classification with Nearest Neighbour Gaussian Kernels
Meyer, B. J., Harwood, B., & Drummond, T. (2018). Deep Metric Learning and Image Classification with Nearest Neighbour Gaussian Kernels. In IEEE International Conference on Image Processing (ICIP) (pp. 151–155). Athens, Greece: IEEE. http://doi.org/10.1109/ICIP.2018.8451297
View More -
A dynamic planner for object assembly tasks based on learning the spatial relationships of its parts from a single demonstration
Abbas, A., Maire, F., Shirazi, S., Dayoub, F., & Eich, M. (2018). A dynamic planner for object assembly tasks based on learning the spatial relationships of its parts from a single demonstration. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11320 LNAI, 759–765. https://doi.org/10.1007/978-3-030-03991-2_68
View More -
SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes
Pham, T. T., Do, T.-T., Sunderhauf, N., & Reid, I. (2018). SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–9). Brisbane: IEEE. http://doi.org/10.1109/ICRA.2018.8461108
View More -
Bootstrapping the Performance of Webly Supervised Semantic Segmentation
Shen, T., Lin, G., Shen, C., & Reid, I. (2018). Bootstrapping the Performance of Webly Supervised Semantic Segmentation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1363–1371). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00148
View More -
Scalable Dense Non-rigid Structure-from-Motion: A Grassmannian Perspective
Kumar, S., Cherian, A., Dai, Y., & Li, H. (2018). Scalable Dense Non-rigid Structure-from-Motion: A Grassmannian Perspective. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 254–263). Salt Lake City, United States: IEEE. http://doi.org/10.1109/CVPR.2018.00034
View More -
Just-In-Time Reconstruction: Inpainting Sparse Maps using Single View Depth Predictors as Priors
*Weerasekera, C. S., Dharmasiri, T., Garg, R., Drummond, T., & Reid, I. (2018). Just-in-Time Reconstruction: Inpainting Sparse Maps Using Single View Depth Predictors as Priors. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–9). Brisbane, Australia: IEEE. http://doi.org/10.1109/ICRA.2018.8460549
View More -
Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM
Park, C., Moghadam, P., Kim, S., Elfes, A., Fookes, C., & Sridharan, S. (2017). Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM. Retrieved from http://arxiv.org/abs/1711.01691
View More -
Cartman: The low-cost Cartesian Manipulator that won the Amazon Robotics Challenge
Morrison, D., Tow, A. W., McTaggart, M., Smith, R., Kelly-Boxall, N., Wade-McCue, S., Erskine, J., Grinover, R., Gurman, A., Hunn, T., Lee, D., Milan, A., Pham, T., Rallos, G., Razjigaev, A., Rowntree, T., Kumar, V., Zhuang, Z., Lehnert, C., Reid, I., Corke, P., and Leitner, J. (2018). Cartman: The low-cost Cartesian Manipulator that won the Amazon Robotics Challenge. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 7757–7764). Brisbane: IEEE. http://doi.org/10.1109/ICRA.2018.8463191
View More -
Dropout Sampling for Robust Object Detection in Open-Set Conditions
Miller, D., Nicholson, L., Dayoub, F., & Sunderhauf, N. (2018). Dropout Sampling for Robust Object Detection in Open-Set Conditions. Proceedings - IEEE International Conference on Robotics and Automation, 3243–3249. https://doi.org/10.1109/ICRA.2018.8460700
View More -
Semantic Segmentation from Limited Training Data
Milan, A., Pham, T., Vijay, K., Morrison, D., Tow, A. W., Liu, L., Erskine, J., Grinover, R., Gurman, A., Hunn, T., Kelly-Boxall, K., Lee, D., McTaggart, M., Rallos, G., Razjigaev, A., Rowntree, T., Shen, T., Smith, R., Wade-McCue, S., Zhuang, Z., Lehnert, C., Lin, G., Reid, I., Corke, P., and Leitner, J. (2018). Semantic Segmentation from Limited Training Data. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1908–1915). Brisbane: IEEE. http://doi.org/10.1109/ICRA.2018.8461082
View More -
Efficacy of Mechanical Weeding Tools: a study into alternative weed management strategies enabled by robotics
McCool, C. S., Beattie, J., Firn, J., Lehnert, C., Kulk, J., Bawden, O., Russell, R., & Perez, T. (2018). Efficacy of Mechanical Weeding Tools: a study into alternative weed management strategies enabled by robotics. IEEE Robotics and Automation Letters, 1–1. http://doi.org/10.1109/LRA.2018.2794619
View More -
Addressing Challenging Place Recognition Tasks using Generative Adversarial Networks
Latif, Y., Garg, R., Milford, M., & Reid, I. (2018). Addressing challenging place recognition tasks using generative adversarial networks. Proceedings - IEEE International Conference on Robotics and Automation, 2349–2355. https://doi.org/10.1109/ICRA.2018.8461081
View More
Edited Collection
-
Special issue on deep learning in robotics
Sünderhauf, N., Leitner, J., Upcroft, B., & Roy, N. (2018, April 27). Special issue on deep learning in robotics. The International Journal of Robotics Research. SAGE PublicationsSage UK: London, England. http://doi.org/10.1177/0278364918769189
View More