Lecture Notes
-
Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps
Tong, J., Mahapatra, D., Bonnington, P., Drummond, T., & Ge, Z. (2020). Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12444 LNCS, 41–51. https://doi.org/10.1007/978-3-030-60548-3_5
View More -
User Expectations of Robots in Public Spaces: A Co-design Methodology
Tian, L., Carreno-Medrano, P., Sumartojo, S., Mintrom, M., Coronado, E., Venture, G., & Kulić, D. (2020). User Expectations of Robots in Public Spaces: A Co-design Methodology (pp. 259–270). Springer, Cham. https://doi.org/10.1007/978-3-030-62056-1_22
View More -
Self-supervised depth estimation to regularise semantic segmentation in knee arthroscopy
Liu, F., Jonmohamadi, Y., Maicas, G., Pandey, A. K., & Carneiro, G. (2020). Self-supervised depth estimation to regularise semantic segmentation in knee arthroscopy. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12261 LNCS, 594–603. https://doi.org/10.1007/978-3-030-59710-8_58
View More -
Pairwise Relation Learning for Semi-supervised Gland Segmentation
Xie, Y., Zhang, J., Liao, Z., Verjans, J., Shen, C., & Xia, Y. (2020). Pairwise Relation Learning for Semi-supervised Gland Segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12265 LNCS, 417–427. https://doi.org/10.1007/978-3-030-59722-1_40
View More
Book Section
-
A Software System for Human-Robot Interaction To Collect Research Data: A HTML/Javascript Service on the Pepper Robot
Suddrey, G., & Robinson, N. (2020). A Software System for Human-Robot Interaction To Collect Research Data. Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 459–461. https://doi.org/10.1145/3371382.3378287
View More
Scientific Publications
-
Fracture-related infection: current methods for prevention and treatment
Foster, A. L., Moriarty, T. F., Trampuz, A., Jaiprakash, A., Burch, M. A., Crawford, R., Paterson, D. L., Metsemakers, W-J., Schuetz, M., & Richards, R. G. (2020). Fracture-related infection: current methods for prevention and treatment. Expert Review of Anti-Infective Therapy, 18(4), 307–321. https://doi.org/10.1080/14787210.2020.1729740
View More -
On the informativeness of measurements in Shiryaev’s Bayesian quickest change detectio
Ford, J. J., James, J., & Molloy, T. L. (2020). On the informativeness of measurements in Shiryaev’s Bayesian quickest change detection. Automatica, 111, 108645. https://doi.org/10.1016/j.automatica.2019.108645
View More -
Event-based visual place recognition with ensembles of temporal windows
Fischer, T., & Milford, M. (2020). Event-based visual place recognition with ensembles of temporal windows. IEEE Robotics and Automation Letters, 5(4), 6924–6931. https://doi.org/10.1109/LRA.2020.3025505
View More -
Preliminary study of the Intel RealSenseTM D415 camera for monitoring respiratory like motion of an irregular surface
Fielding, A. L., Pandey, A. K., Jonmohamadi, Y., Via, R., Weber, D. C., Lomax, A. J., & Fattori, G. (2020). Preliminary study of the Intel RealSenseTM D415 camera for monitoring respiratory like motion of an irregular surface. IEEE Sensors Journal, 1–1. https://doi.org/10.1109/jsen.2020.2993264
View More -
Temporarily-Aware Context Modeling Using Generative Adversarial Networks for Speech Activity Detection
Fernando, T., Sridharan, S., McLaren, M., Priyasad, D., Denman, S., & Fookes, C. (2020). Temporarily-Aware Context Modeling Using Generative Adversarial Networks for Speech Activity Detection. IEEE/ACM Transactions on Audio Speech and Language Processing, 28, 1159–1169. https://doi.org/10.1109/TASLP.2020.2982297
View More -
Detection of Fake and Fraudulent Faces via Neural Memory Networks
Fernando, T., Fookes, C., Denman, S., & Sridharan, S. (2020). Detection of Fake and Fraudulent Faces via Neural Memory Networks. IEEE Transactions on Information Forensics and Security, 16, 1973–1988. https://doi.org/10.1109/TIFS.2020.3047768
View More -
Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion
Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020). Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion. IEEE Signal Processing Magazine, 38(1), 87–96. https://doi.org/10.1109/MSP.2020.2988287
View More -
Why are Generative Adversarial Networks so Fascinating and Annoying?
Faria, F. A., & Carneiro, G. (2020). Why are Generative Adversarial Networks so Fascinating and Annoying? Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020, 1–8. https://doi.org/10.1109/SIBGRAPI51738.2020.00009
View More -
From known to the unknown: Transferring knowledge to answer questions about novel visual and semantic concept
Farazi, M. R., Khan, S. H., & Barnes, N. (2020). From known to the unknown: Transferring knowledge to answer questions about novel visual and semantic concepts. Image and Vision Computing, 103, 103985. https://doi.org/10.1016/j.imavis.2020.103985
View More -
A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation
Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation. IEEE Journal of Biomedical and Health Informatics, 1–1. https://doi.org/10.1109/jbhi.2020.3027910
View More -
Domain Generalization in Biosignal Classification
Dissanayake, T., Fernando, T., Denman, S., Ghaemmaghami, H., Sridharan, S., & Fookes, C. (2020). Domain Generalization in Biosignal Classification. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2020.3045720
View More -
Learning Object Relation Graph and Tentative Policy for Visual Navigation
Du H., Yu X., Zheng L. (2020) Learning Object Relation Graph and Tentative Policy for Visual Navigation. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_2
View More -
Increasing ventilator surge capacity in COVID 19 pandemic: Design, manufacture and in vitro-in vivo testing in anaesthetized healthy pigs of a rapid prototyped mechanical ventilator
Dhanani, J., Pang, G., Pincus, J., Ahern, B., Goodwin, W., Cowling, N., Whitten, G., Abdul-Aziz, M. H., Martin, S., Corke, P., & Laupland, K. B. (2020). Increasing ventilator surge capacity in COVID 19 pandemic: Design, manufacture and in vitro-in vivo testing in anaesthetized healthy pigs of a rapid prototyped mechanical ventilator. BMC Research Notes, 13(1), 1–6. https://doi.org/10.1186/s13104-020-05259-z
View More -
Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path
Deremetz, M., Lenain, R., Laneurit, J., Debain, C., & Peynot, T. (2020). Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path. CCTA 2020 - 4th IEEE Conference on Control Technology and Applications, 372–379. https://doi.org/10.1109/CCTA41146.2020.9206153
View More -
Towards Light‐Weight Portrait Matting via Parameter Sharing
Dai, Y., Lu, H., & Shen, C. (2020). Towards Light‐Weight Portrait Matting via Parameter Sharing. Computer Graphics Forum, cgf.14179. https://doi.org/10.1111/cgf.14179
View More -
Shonan Rotation Averaging: Global Optimality by Surfing SO(p)n
Dellaert F., Rosen D.M., Wu J., Mahony R., Carlone L. (2020) Shonan Rotation Averaging: Global Optimality by Surfing SO(p)n. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_18
View More -
The Outcome of Total Knee Arthroplasty With and Without Patellar Resurfacing up to 17 Years: A Report From the Australian Orthopaedic Association National Joint Replacement Registry
Coory, J. A., Tan, K. G., Whitehouse, S. L., Hatton, A., Graves, S. E., & Crawford, R. W. (2020). The Outcome of Total Knee Arthroplasty With and Without Patellar Resurfacing up to 17 Years: A Report From the Australian Orthopaedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(1), 132–138. https://doi.org/10.1016/j.arth.2019.08.007
View More -
Benchmarking Simulated Robotic Manipulation through a Real World Dataset
Collins, J., McVicar, J., Wedlock, D., Brown, R., Howard, D., & Leitner, J. (2020). Benchmarking Simulated Robotic Manipulation through a Real World Dataset. IEEE Robotics and Automation Letters, 5(1), 250–257. https://doi.org/10.1109/LRA.2019.2953663
View More -
A robotic vision system for inspection of soiling at CSP plants
Coventry, J., Asselineau, C. A., Salahat, E., Raman, M. A., & Mahony, R. (2020). A robotic vision system for inspection of soiling at CSP plants. AIP Conference Proceedings, 2303(1), 100001. https://doi.org/10.1063/5.0029493
View More -
Towards a Multimodal System combining Augmented Reality and Electromyography for Robot Trajectory Programming and Execution
Chan, W. P., Sakr, M., Quintero, C. P., Croft, E., & Van Der Loos, H. F. M. H. (2020). Towards a Multimodal System combining Augmented Reality and Electromyography for Robot Trajectory Programming and Execution. 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, 419–424. https://doi.org/10.1109/RO-MAN47096.2020.9223526
View More -
Mortality and Implant Survival With Simultaneous and Staged Bilateral Total Hip Arthroplasty: Experience From the Australian Orthopedic Association National Joint Replacement Registry
Calabro, L., Yong, M., Whitehouse, S. L., Hatton, A., de Steiger, R., & Crawford, R. W. (2020). Mortality and Implant Survival With Simultaneous and Staged Bilateral Total Hip Arthroplasty: Experience From the Australian Orthopedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(9), 2518–2524. https://doi.org/10.1016/j.arth.2020.04.027
View More -
Solving the Blind Perspective-n-Point Problem End-to-End with Robust Differentiable Geometric Optimization
Campbell D., Liu L., Gould S. (2020) Solving the Blind Perspective-n-Point Problem End-to-End with Robust Differentiable Geometric Optimization. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_15
View More -
A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps
Cagara, D., Dunbabin, M., & Rigby, P. (2020). A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps. Proceedings - IEEE International Conference on Robotics and Automation, 8573–8579. https://doi.org/10.1109/ICRA40945.2020.9196680
View More -
Fixation Method for Hip Arthroplasty Stem Following Hip Fracture: A Population-Level Cost-Effectiveness Analysis
Blythe, R., O’Gorman, P. M., Crawford, R. W., Feenan, R., Hatton, A., Whitehouse, S. L., & Graves, N. (2020). Fixation Method for Hip Arthroplasty Stem Following Hip Fracture: A Population-Level Cost-Effectiveness Analysis. Journal of Arthroplasty, 35(6), 1614–1621. https://doi.org/10.1016/j.arth.2020.02.001
View More -
Saliency Improvement in Feature-Poor Surgical Environments Using Local Laplacian of Specified Histograms
Banach, A., Strydom, M., Jaiprakash, A., Carneiro, G., Brown, C., Crawford, R., & McFadyen, A. (2020). Saliency Improvement in Feature-Poor Surgical Environments Using Local Laplacian of Specified Histograms. IEEE Access, 8, 213378–213388. https://doi.org/10.1109/ACCESS.2020.3040187
View More -
Effect of Gate Conductance on Hygroscopic Insulator Organic Field‐Effect Transistors
Arthur, J. N., Chaudhry, M. U., Woodruff, M. A., Pandey, A. K., & Yambem, S. D. (2020). Effect of Gate Conductance on Hygroscopic Insulator Organic Field‐Effect Transistors. Advanced Electronic Materials, 6(5), 1901079. https://doi.org/10.1002/aelm.201901079
View More -
Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy
Antico, M., Vukovic, D., Camps, S. M., Sasazawa, F., Takeda, Y., Le, A. T. H., Jaiprakash, A., Roberts, J., Crawford, R., Fontanarosa, D., & Carneiro, G. (2020). Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(12), 2543–2552. https://doi.org/10.1109/TUFFC.2020.2965291
View More -
4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study
Antico, M., Sasazawa, F., Takeda, Y., Jaiprakash, A. T., Wille, M. L., Pandey, A. K., Crawford, R., & Fontanarosa, D. (2020). 4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study. IEEE Access, 8, 146331–146341. https://doi.org/10.1109/ACCESS.2020.3014999
View More -
Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy
Antico, M., Sasazawa, F., Dunnhofer, M., Camps, S. M., Jaiprakash, A. T., Pandey, A. K., Crawford, R., Carneiro, G., & Fontanarosa, D. (2020). Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy. Ultrasound in Medicine and Biology, 46(2), 422–435. https://doi.org/10.1016/j.ultrasmedbio.2019.10.015
View More -
Supervised Scene Illumination Control in Stereo Arthroscopes for Robot Assisted Minimally Invasive Surgery
Ali, S., Jonmohamadi, Y., Takeda, Y., Roberts, J., Crawford, R., & Pandey, A. K. (2020). Supervised Scene Illumination Control in Stereo Arthroscopes for Robot Assisted Minimally Invasive Surgery. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2020.3037301
View More -
Neural Memory Networks for Seizure Type Classification
Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Petersson, L., Aburn, M. J., & Fookes, C. (2020). Neural Memory Networks for Seizure Type Classification. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 569–575. https://doi.org/10.1109/EMBC44109.2020.9175641
View More -
Attention Networks for Multi-Task Signal Analysis
Ahmedt-Aristizabal, D., Armin, M. A., Denman, S., Fookes, C., & Petersson, L. (2020). Attention Networks for Multi-Task Signal Analysis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 184–187. https://doi.org/10.1109/EMBC44109.2020.9175730
View More -
MobileFAN: Transferring Deep Hidden Representation for Face Alignment
Zhao, Y., Liu, Y., Shen, C., Gao, Y., & Xiong, S. (2020). MobileFAN: Transferring deep hidden representation for face alignment. Pattern Recognition, 100, 107114. https://doi.org/10.1016/j.patcog.2019.107114
View More -
Deep Multiphase Level Set for Scene Parsing
Zhang, P., Liu, W., Lei, Y., Wang, H., & Lu, H. (2020). Deep Multiphase Level Set for Scene Parsing. IEEE Transactions on Image Processing, 29, 4556–4567. https://doi.org/10.1109/TIP.2019.2957915
View More -
Memory-Efficient Hierarchical Neural Architecture Search for Image Denoising
Zhang, H., Li, Y., Chen, H., & Shen, C. (2020). Memory-efficient hierarchical neural architecture search for image denoising. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3654–3663. https://doi.org/10.1109/CVPR42600.2020.00371
View More -
Visual Odometry Revisited: What Should Be Learnt?
Zhan, H., Weerasekera, C. S., Bian, J. W., & Reid, I. (2020). Visual Odometry Revisited: What Should Be Learnt? Proceedings - IEEE International Conference on Robotics and Automation, 4203–4210. https://doi.org/10.1109/ICRA40945.2020.9197374
View More -
A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification
Xie, Y., Zhang, J., Xia, Y., & Shen, C. (2020). A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification. IEEE Transactions on Medical Imaging, 39(7), 2482–2493. https://doi.org/10.1109/TMI.2020.2972964
View More -
PolarMask: Single Shot Instance Segmentation with Polar Representation
Xie, E., Sun, P., Song, X., Wang, W., Liu, X., Liang, D., Shen, C., & Luo, P. (2020). PolarMask: Single shot instance segmentation with polar representation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12190–12199. https://doi.org/10.1109/CVPR42600.2020.01221
View More -
Improving user specifications for robot behavior through active preference learning: Framework and evaluation
Wilde, N., Blidaru, A., Smith, S. L., & Kulić, D. (2020). Improving user specifications for robot behavior through active preference learning: Framework and evaluation. The International Journal of Robotics Research, 39(6), 651–667. https://doi.org/10.1177/0278364920910802
View More -
SOLO: Segmenting Objects by Locations
Wang X., Kong T., Shen C., Jiang Y., Li L. (2020) SOLO: Segmenting Objects by Locations. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_38
View More -
Optimal Feature Transport for Cross-View Image Geo-Localization
Shi, Y., Yu, X., Liu, L., Zhang, T., & Li, H. (2020). Optimal Feature Transport for Cross-View Image Geo-Localization. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 11990-11997. https://doi.org/10.1609/aaai.v34i07.6875
View More -
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Nguyen, C., Do, T. T., & Carneiro, G. (2020). Uncertainty in model-agnostic meta-learning using variational inference. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 3079–3089. https://doi.org/10.1109/WACV45572.2020.9093536
View More -
Unsupervised Task Design to Meta-Train Medical Image Classifiers
Maicas, G., Nguyen, C., Motlagh, F., Nascimento, J. C., & Carneiro, G. (2020). Unsupervised Task Design to Meta-Train Medical Image Classifiers. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1339–1342. https://doi.org/10.1109/ISBI45749.2020.9098470
View More -
Index Network
Lu, H., Dai, Y., Shen, C., & Xu, S. (2019, August 11). Index network. ArXiv. https://doi.org/10.1109/tpami.2020.3004474
View More -
Photoshopping Colonoscopy Video Frames
Liu, Y., Tian, Y., Maicas, G., Cheng Tao Pu, L. Z., Singh, R., Verjans, J. W., & Carneiro, G. (2020). Photoshopping Colonoscopy Video Frames. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1642–1646. https://doi.org/10.1109/ISBI45749.2020.9098406
View More -
A Generalized Framework for Edge-preserving and Structure-preserving Image Smoothing
Liu, W., Zhang, P., Huang, X., Yang, J., Shen, C., & Reid, I. (2019, July 22). A generalized framework for edge-preserving and structure-preserving image smoothing. ArXiv, Vol. 34, pp. 11620–11628. https://doi.org/10.1609/aaai.v34i07.6830
View More -
Word-level Deep Sign Language Recognition from Video: A New Large-scale Dataset and Methods Comparison
Li, D., Opazo, C. R., Yu, X., & Li, H. (2020). Word-level deep sign language recognition from video: A new large-scale dataset and methods comparison. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1448–1458. https://doi.org/10.1109/WACV45572.2020.9093512
View More -
Semi-supervised Multi-domain Multi-task Training for Metastatic Colon Lymph Node Diagnosis From Abdominal CT
Glaser, S., Maicas, G., Bedrikovetski, S., Sammour, T., & Carneiro, G. (2020). Semi-Supervised Multi-Domain Multi-Task Training for Metastatic Colon Lymph Node Diagnosis from Abdominal CT. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1478–1481. https://doi.org/10.1109/ISBI45749.2020.9098372
View More -
End-to-End Learnable Geometric Vision by Backpropagating PnP Optimization
Chen, B., Parra, Á., Cao, J., Li, N., & Chin, T. J. (2020). End-to-end learnable geometric vision by backpropagating PNP optimization. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8097–8106. https://doi.org/10.1109/CVPR42600.2020.00812
View More -
CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning
Chancan, M., & Milford, M. (2020). CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning. Proceedings - IEEE International Conference on Robotics and Automation, 1697–1704. https://doi.org/10.1109/ICRA40945.2020.9197336
View More -
Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraint
Ch’ng, S. F., Sogi, N., Purkait, P., Chin, T. J., & Fukui, K. (2020). Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraints∗. Proceedings - IEEE International Conference on Robotics and Automation, 9680–9686. https://doi.org/10.1109/ICRA40945.2020.9196902
View More -
A Deep Journey into Super-resolution: A survey
Anwar, S., Khan, S., & Barnes, N. (2020, June 1). A Deep Journey into Super-resolution: A Survey. ACM Computing Surveys, Vol. 53, pp. 1–34. https://doi.org/10.1145/3390462
View More -
Densely Residual Laplacian Super-Resolution
Anwar, S., & Barnes, N. (2019, June 27). Densely Residual Laplacian Super-Resolution. ArXiv. https://doi.org/10.1109/tpami.2020.3021088
View More -
Component-based Attention for Large-scale Trademark Retrieval
Tursun, O., Denman, S., Sivapalan, S., Sridharan, S., Fookes, C., & Mau, S. (2019). Component-based Attention for Large-scale Trademark Retrieval. IEEE Transactions on Information Forensics and Security. https://doi.org/10.1109/TIFS.2019.2959921
View More -
Towards Effective Deep Embedding for Zero-Shot Learning
Zhang, L., Wang, P., Liu, L., Shen, C., Wei, W., Zhang, Y., & Van Den Hengel, A. (2020). Towards Effective Deep Embedding for Zero-Shot Learning. IEEE Transactions on Circuits and Systems for Video Technology, 30(9), 2843–2852. https://doi.org/10.1109/TCSVT.2020.2984666
View More -
Simultaneous compression and quantization: A joint approach for efficient unsupervised hashing
Hoang, T., Do, T. T., Le, H., Le-Tan, D. K., & Cheung, N. M. (2020). Simultaneous compression and quantization: A joint approach for efficient unsupervised hashing. Computer Vision and Image Understanding, 191, 102852. https://doi.org/10.1016/j.cviu.2019.102852
View More -
Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks
Rahimi, A., Shaban, A., Cheng, C.-A., Hartley, R., & Boots, B. (2020). Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks. http://arxiv.org/abs/2003.06820
View More -
Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization
Rahimi, A., Shaban, A., Ajanthan, T., Hartley, R., & Boots, B. (2020). Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization. http://arxiv.org/abs/2003.08375
View More -
Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point Problem
Liu, L., Campbell, D., Li, H., Zhou, D., Song, X., & Yang, R. (2020). Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point Problem. ArXiv. http://arxiv.org/abs/2003.06752
View More -
Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level Optimization
Jiang, S., Campbell, D., Liu, M., Gould, S., & Hartley, R. (2020). Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level Optimization. ArXiv. http://arxiv.org/abs/2002.11826
View More -
Sub-Instruction Aware Vision-and-Language Navigation
Hong, Y., Rodriguez-Opazo, C., Wu, Q., & Gould, S. (2020). Sub-Instruction Aware Vision-and-Language Navigation. ArXiv. http://arxiv.org/abs/2004.02707
View More -
ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking
Saleh, F., Aliakbarian, S., Salzmann, M., & Gould, S. (2020). ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking. http://arxiv.org/abs/2004.07482
View More -
Dynamic SLAM: The Need For Speed
Henein, M., Zhang, J., Mahony, R., & Ila, V. (2020). Dynamic SLAM: The Need For Speed. Proceedings - IEEE International Conference on Robotics and Automation, 2123–2129. http://arxiv.org/abs/2002.08584
View More -
LyRN (Lyapunov Reaching Network): A Real-Time Closed Loop approach from Monocular Vision
Zhuang, Z., Yu, X., & Mahony, R. (2020). LyRN (Lyapunov Reaching Network): A Real-Time Closed Loop approach from Monocular Vision. Proceedings - IEEE International Conference on Robotics and Automation, 8331–8337. http://arxiv.org/abs/2005.12072
View More -
UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders
Zhang, J., Fan, D. P., Dai, Y., Anwar, S., Saleh, F. S., Zhang, T., & Barnes, N. (2020). UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8579–8588. https://doi.org/10.1109/CVPR42600.2020.00861
View More -
Random Erasing Data Augmentation
Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). Random Erasing Data Augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 13001–13008.
View More -
An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance
van Goor, P., Mahony, R., Hamel, T., & Trumpf, J. (2020). An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance. ArXiv. http://arxiv.org/abs/2005.14347
View More -
A Minimum Energy Filter for Localisation of an Unmanned Aerial Vehicle
Henderson, J., Zamani, M., Mahony, R., & Trumpf, J. (2020). A Minimum Energy Filter for Localisation of an Unmanned Aerial Vehicle. http://arxiv.org/abs/2009.04630
View More -
Accuracy vs. Complexity: A Trade-off in Visual Question Answering Models
Farazi, M. R., Khan, S. H., & Barnes, N. (2020). Accuracy vs. Complexity: A Trade-off in Visual Question Answering Models. ArXiv. http://arxiv.org/abs/2001.07059
View More -
Bidirectional Self-Normalizing Neural Networks
Lu, Y., Gould, S., & Ajanthan, T. (2020). Bidirectional Self-Normalizing Neural Networks. http://arxiv.org/abs/2006.12169
View More -
Calibration of Neural Networks using Splines
Gupta, K., Rahimi, A., Ajanthan, T., Mensink, T., Sminchisescu, C., & Hartley, R. (2020). Calibration of Neural Networks using Splines. http://arxiv.org/abs/2006.12800
View More -
Correlating edge, pose with parsing
Zhang, Z., Su, C., Zheng, L., & Xie, X. (2020). Correlating edge, pose with parsing. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8897–8906. https://doi.org/10.1109/CVPR42600.2020.00892
View More -
Deblurring by Realistic Blurring
Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. (2020). Deblurring by Realistic Blurring. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2734–2743. https://doi.org/10.1109/CVPR42600.2020.00281
View More -
Mosaic super-resolution via sequential feature pyramid networks
Shoeiby, M., Armin, M. A., Aliakbarian, S., Anwar, S., & Petersson, L. (2020). Mosaic super-resolution via sequential feature pyramid networks. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 378–387. https://doi.org/10.1109/CVPRW50498.2020.00050
View More -
Transductive zero-shot learning for 3D point cloud classification
Cheraghian, A., Rahman, S., Campbell, D., & Petersson, L. (2020). Transductive zero-shot learning for 3D point cloud classification. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 912–922. https://doi.org/10.1109/WACV45572.2020.9093545
View More -
Reducing the Sim-to-Real Gap for Event Cameras
Stoffregen, T., Scheerlinck, C., Scaramuzza, D., Drummond, T., Barnes, N., Kleeman, L., & Mahony, R. (2020). Reducing the Sim-to-Real Gap for Event Cameras. http://arxiv.org/abs/2003.09078
View More -
Hierarchical Neural Architecture Search for Deep Stereo Matching
Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Drummond, T., Li, H., & Ge, Z. (2020). Hierarchical Neural Architecture Search for Deep Stereo Matching. http://arxiv.org/abs/2010.13501
View More -
Events, Event Prediction, and Predictive Processing
Hohwy, J., Hebblewhite, A., & Drummond, T. (2020). Events, Event Prediction, and Predictive Processing. Topics in Cognitive Science, tops.12491. https://doi.org/10.1111/tops.12491
View More -
Bridge the Domain Gap Between Ultra-wide-field and Traditional Fundus Images via Adversarial Domain Adaptation
Ju, L., Wang, X., Zhou, Q., Zhu, H., Harandi, M., Bonnington, P., Drummond, T., & Ge, Z. (2020). Bridge the Domain Gap Between Ultra-wide-field and Traditional Fundus Images via Adversarial Domain Adaptation. ArXiv. http://arxiv.org/abs/2003.10042
View More -
Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular camera for holistic trajectory planning
Loukkal, A., Grandvalet, Y., Drummond, T., & Li, Y. (2020). Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular camera for holistic trajectory planning. http://arxiv.org/abs/2008.04047
View More -
Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps
Tong, J., Mahapatra, D., Bonnington, P., Drummond, T., & Ge, Z. (2020). Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12444 LNCS, 41–51. https://doi.org/10.1007/978-3-030-60548-3_5
View More -
Automatic Pruning for Quantized Neural Networks
Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Automatic Pruning for Quantized Neural Networks. Retrieved from http://arxiv.org/abs/2002.00523
View More -
Learning User Preferences from Corrections on State Lattices
Wilde, N., Kulic, D., & Smith, S. L. (2020). Learning User Preferences from Corrections on State Lattices. Proceedings - IEEE International Conference on Robotics and Automation, 4913–4919. https://doi.org/10.1109/ICRA40945.2020.9197040
View More -
Events and Machine Learning
Hebblewhite, A., Hohwy, J., & Drummond, T. (2020). Events and Machine Learning. Topics in Cognitive Science, tops.12520. https://doi.org/10.1111/tops.12520
View More -
Residual Likelihood Forests
Zuo, Y., & Drummond, T. (2020). Residual Likelihood Forests. http://arxiv.org/abs/2011.02086
View More -
A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews
Marrese-Taylor, E., Rodriguez-Opazo, C., Balazs, J. A., Gould, S., & Matsuo, Y. (2020). A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews. ACL 2020
View More -
Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching
Shi, Y., Yu, X., Campbell, D., & Li, H. (2020). Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR 2020
View More -
DGPose: Deep Generative Models for Human Body Analysis
de Bem, R., Ghosh, A., Ajanthan, T., Miksik, O., Boukhayma, A., Siddharth, N., & Torr, P. (2020). DGPose: Deep Generative Models for Human Body Analysis. International Journal of Computer Vision, 128(5), 1537–1563.
View More -
DPDist : Comparing Point Clouds Using Deep Point Cloud Distance
Urbach, D., Ben-Shabat, Y., & Lindenbaum, M. (2020). DPDist : Comparing Point Clouds Using Deep Point Cloud Distance.
View More -
Inferring Temporal Compositions of Actions Using Probabilistic Automata
Cruz, R. S., Cherian, A., Fernando, B., Campbell, D., & Gould, S. (2020). Inferring temporal compositions of actions using probabilistic automata. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 1514–1522. https://doi.org/10.1109/CVPRW50498.2020.00192
View More -
Transferring Cross-domain Knowledge for Video Sign Language Recognition
Li, D., Yu, X., Xu, C., Petersson, L., & Li, H. (2020). Transferring Cross-domain Knowledge for Video Sign Language Recognition, CVPR 2020
View More -
EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency
Faisal, M., Akhter, I., Ali, M., & Hartley, R. (2020). EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1873–1882. https://doi.org/10.1109/WACV45572.2020.9093589
View More -
Learning to Structure an Image with Few Colors
Hou, Y., Zheng, L., & Gould, S. (2020). Learning to Structure an Image with Few Colors, CVPR 2020
View More -
Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
Zhou, D., Fang, J., Song, X., Liu, L., Yin, J., Dai, Y., Li, H., & Yang, R. (2020). Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1839–1849.
View More -
Equivariant Filter Design for Kinematic Systems on Lie Groups
Mahony, R., & Trumpf, J. (2020). Equivariant Filter Design for Kinematic Systems on Lie Groups. http://arxiv.org/abs/2004.00828
View More -
Equivariant Systems Theory and Observer Design
Mahony, R., Hamel, T., & Trumpf, J. (2020). Equivariant Systems Theory and Observer Design. http://arxiv.org/abs/2006.08276
View More -
Few-shot Action Recognition with Permutation-invariant Attention
Zhang, H., Zhang, L., Qi, X., Li, H., Torr, P. H. S., & Koniusz, P. (2020). Few-shot Action Recognition with Permutation-invariant Attention. 525–542. http://arxiv.org/abs/2001.03905
View More -
Improved Gradient based Adversarial Attacks for Quantized Networks
Gupta, K., & Ajanthan, T. (2020). Improved Gradient based Adversarial Attacks for Quantized Networks. ArXiv. http://arxiv.org/abs/2003.13511
View More -
Post-hoc Calibration of Neural Networks
Rahimi, A., Gupta, K., Ajanthan, T., Mensink, T., Sminchisescu, C., & Hartley, R. (2020). Post-hoc Calibration of Neural Networks. http://arxiv.org/abs/2006.12807
View More -
Localising In Complex Scenes Using Balanced Adversarial Adaptation
Avraham, G., Zuo, Y., & Drummond, T. (2020). Localising In Complex Scenes Using Balanced Adversarial Adaptation. http://arxiv.org/abs/2011.04122
View More -
Joint Estimation of Expertise and Reward Preferences From Human Demonstrations
Carreno-Medrano, P., Smith, S. L., & Kulic, D. (2020). Joint Estimation of Expertise and Reward Preferences From Human Demonstrations. http://arxiv.org/abs/2011.04118
View More -
User Expectations of Robots in Public Spaces: A Co-design Methodology
Tian, L., Carreno-Medrano, P., Sumartojo, S., Mintrom, M., Coronado, E., Venture, G., & Kulić, D. (2020). User Expectations of Robots in Public Spaces: A Co-design Methodology (pp. 259–270). Springer, Cham. https://doi.org/10.1007/978-3-030-62056-1_22
View More -
Conditional Convolutions for Instance Segmentation
Tian, Z., Shen, C., & Chen, H. (2020). Conditional Convolutions for Instance Segmentation. http://arxiv.org/abs/2003.05664
View More -
Real-time Image Smoothing via Iterative Least Squares
Liu, W., Zhang, P., Huang, X., Yang, J., Shen, C., & Reid, I. (2020). Real-time Image Smoothing via Iterative Least Squares. ACM Transactions on Graphics, 39(3), 1–24. https://doi.org/10.1145/3388887
View More -
OPMP: An Omni-directional Pyramid Mask Proposal Network for Arbitrary-shape Scene Text Detection
Zhang, S., Liu, Y., Jin, L., Wei, Z., & Shen, C. (2020). OPMP: An Omni-directional Pyramid Mask Proposal Network for Arbitrary-shape Scene Text Detection. IEEE Transactions on Multimedia, 1–1. https://doi.org/10.1109/TMM.2020.2978630
View More -
MOT20: A benchmark for multi object tracking in crowded scenes
Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixé, L. (2020). MOT20: A benchmark for multi object tracking in crowded scenes. ArXiv. http://arxiv.org/abs/2003.09003
View More -
Topological Sweep for Multi-Target Detection of Geostationary Space Objects
Liu, D., Chen, B., Chin, T.-J., & Rutten, M. (2020). Topological Sweep for Multi-Target Detection of Geostationary Space Objects. http://arxiv.org/abs/2003.09583
View More -
Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection
Pang, G., Yan, C., Shen, C., van den Hengel, A., & Bai, X. (2020). Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12170–12179. https://doi.org/10.1109/CVPR42600.2020.01219
View More -
DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers
Zhang, C., Cai, Y., Lin, G., & Shen, C. (2020). DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12200–12210. https://doi.org/10.1109/CVPR42600.2020.01222
View More -
MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking
Dendorfer, P., Os̆ep, A., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S., & Leal-Taixé, L. (2021). MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking. International Journal of Computer Vision, 129(4), 845–881. https://doi.org/10.1007/s11263-020-01393-0
View More -
Topological Sweep for Multi-Target Detection of Geostationary Space Objects
Liu, D., Chen, B., Chin, T.-J., & Rutten, M. (2020). Topological Sweep for Multi-Target Detection of Geostationary Space Objects. http://arxiv.org/abs/2003.09583
View More -
SOLOv2: Dynamic, Faster and Stronger
Wang, X., Zhang, R., Kong, T., Li, L., & Shen, C. (2020). SOLOv2: Dynamic, Faster and Stronger. http://arxiv.org/abs/2003.10152
View More -
Multi-way backpropagation for training compact deep neural networks
Guo, Y., Chen, J., Du, Q., Van Den Hengel, A., Shi, Q., & Tan, M. (2020). Multi-way backpropagation for training compact deep neural networks. Neural Networks, 126, 250–261. https://doi.org/10.1016/j.neunet.2020.03.001
View More -
Mask Encoding for Single Shot Instance Segmentation
Zhang, R., Tian, Z., Shen, C., You, M., & Yan, Y. (2020). Mask Encoding for Single Shot Instance Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 10223–10232. https://doi.org/10.1109/CVPR42600.2020.01024
View More -
Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume
Johnston, A., & Carneiro, G. (2020). Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4755–4764. https://doi.org/10.1109/CVPR42600.2020.00481
View More -
Context Prior for Scene Segmentation
Yu, C., Wang, J., Gao, C., Yu, G., Shen, C., & Sang, N. (2020). Context prior for scene segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12413–12422. https://doi.org/10.1109/CVPR42600.2020.01243
View More -
BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation
Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., & Sang, N. (2020). BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation. http://arxiv.org/abs/2004.02147
View More -
A Dynamic Parameter Enhanced Network for distant supervised relation extraction
Gou, Y., Lei, Y., Liu, L., Zhang, P., & Peng, X. (2020). A Dynamic Parameter Enhanced Network for distant supervised relation extraction. Knowledge-Based Systems, 197, 105912. https://doi.org/10.1016/j.knosys.2020.105912
View More -
Role-Wise Data Augmentation for Knowledge Distillation
Fu, J., Geng, X., Duan, Z., Zhuang, B., Yuan, X., Trischler, A., Lin, J., Pal, C., & Dong, H. (2020). Role-Wise Data Augmentation for Knowledge Distillation. https://github.com/bigaidream-projects/role-kd
View More -
Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision
Teney, D., Abbasnedjad, E., & Hengel, A. van den. (2020). Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision. http://arxiv.org/abs/2004.09034
View More -
Structured Multimodal Attentions for TextVQA
Gao, C., Zhu, Q., Wang, P., Li, H., Liu, Y., Hengel, A. van den, & Wu, Q. (2020). Structured Multimodal Attentions for TextVQA. http://arxiv.org/abs/2006.00753
View More -
Monotone Boolean Functions, Feasibility/Infeasibility, LP-type problems and MaxCon
Suter, D., Tennakoon, R., Zhang, E., Chin, T.-J., & Bab-Hadiashar, A. (2020). Monotone Boolean Functions, Feasibility/Infeasibility, LP-type problems and MaxCon. http://arxiv.org/abs/2005.05490
View More -
Scene Text Image Super-Resolution in the Wild
Wang, W., Xie, E., Liu, X., Wang, W., Liang, D., Shen, C., & Bai, X. (2020). Scene Text Image Super-Resolution in the Wild. http://arxiv.org/abs/2005.03341
View More -
Scope Head for Accurate L ocalization in Object Detection
Zhan, G., Xu, D., Lu, G., Wu, W., Shen, C., & Ouyang, W. (2020).Scope Head for Accurate L ocalization in Object Detection. http://arxiv.org/abs/2005.04854
View More -
Anomaly Detection via Neighbourhood Contrast. Lecture Notes in Computer Science
Chen B., Ting K.M., Chin TJ. (2020) Anomaly Detection via Neighbourhood Contrast. In: Lauw H., Wong RW., Ntoulas A., Lim EP., Ng SK., Pan S. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2020. Lecture Notes in Computer Science, vol 12085. Springer, Cham. https://doi.org/10.1007/978-3-030-47436-2_49
View More -
Visual Question Answering with Prior Class Semantics
Shevchenko, V., Teney, D., Dick, A., & Hengel, A. van den. (2020). Visual Question Answering with Prior Class Semantics. Retrieved from http://arxiv.org/abs/2005.01239
View More -
On the Value of Out-of-Distribution Testing: An Example of Goodhart’s Law
Teney, D., Kafle, K., Shrestha, R., Abbasnejad, E., Kanan, C., & Hengel, A. van den. (2020). On the Value of Out-of-Distribution Testing: An Example of Goodhart’s Law. Retrieved from http://arxiv.org/abs/2005.09241
View More -
Medical Data Inquiry Using a Question Answering Model
Liao, Z., Liu, L., Wu, Q., Teney, D., Shen, C., van den Hengel, A., & Verjans, J. (2020). Medical Data Inquiry Using a Question Answering Model. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020-April, 1490–1493. https://doi.org/10.1109/ISBI45749.2020.9098531
View More -
Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue
Bian, J.-W., Zhan, H., Wang, N., Chin, T.-J., Shen, C., & Reid, I. (2020). Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue. Retrieved from http://arxiv.org/abs/2006.02708
View More -
Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification
Hermoza, R., Maicas, G., Nascimento, J. C., & Carneiro, G. (2020). Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification. Retrieved from http://arxiv.org/abs/2005.10550
View More -
Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos
Ehsanpour M., Abedin A., Saleh F., Shi J., Reid I., Rezatofighi H. (2020) Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_11
View More -
Deep Learning for Anomaly Detection: A Review
Pang, G., Shen, C., Cao, L., & Hengel, A. van den. (2020). Deep Learning for Anomaly Detection: A Review. http://arxiv.org/abs/2007.02500
View More -
Few-Shot Microscopy Image Cell Segmentation
Dawoud, Y., Hornauer, J., Carneiro, G., & Belagiannis, V. (2020). Few-Shot Microscopy Image Cell Segmentation. Retrieved from http://arxiv.org/abs/2007.01671
View More -
Self-supervised depth estimation to regularise semantic segmentation in knee arthroscopy
Liu, F., Jonmohamadi, Y., Maicas, G., Pandey, A. K., & Carneiro, G. (2020). Self-supervised depth estimation to regularise semantic segmentation in knee arthroscopy. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12261 LNCS, 594–603. https://doi.org/10.1007/978-3-030-59710-8_58
View More -
Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks.
Liu, Y., Liu, L., Wang, P., Zhang, P., & Lei, Y. (2020). Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks. Retrieved from http://arxiv.org/abs/2007.03207
View More -
Scripted Video Generation With a Bottom-Up Generative Adversarial Network
Chen, Q., Wu, Q., Chen, J., Wu, Q., van den Hengel, A., & Tan, M. (2020). Scripted Video Generation With a Bottom-Up Generative Adversarial Network. IEEE Transactions on Image Processing, 29, 7454–7467. https://doi.org/10.1109/TIP.2020.3003227
View More -
Socially and Contextually Aware Human Motion and Pose Forecasting
Adeli, V., Adeli, E., Reid, I., Niebles, J. C., & Rezatofighi, H. (2020). Socially and Contextually Aware Human Motion and Pose Forecasting. IEEE Robotics and Automation Letters, 5(4), 6033–6040. https://doi.org/10.1109/LRA.2020.3010742
View More -
Attend And Discriminate: Beyond the State-of-the-Art for Human Activity Recognition using Wearable Sensors
Abedin, A., Ehsanpour, M., Shi, Q., Rezatofighi, H., & Ranasinghe, D. C. (2020). Attend And Discriminate: Beyond the State-of-the-Art for Human Activity Recognition using Wearable Sensors. Retrieved from http://arxiv.org/abs/2007.07172
View More -
Architecture search of dynamic cells for semantic video segmentation
Nekrasov, V., Chen, H., Shen, C., & Reid, I. (2020). Architecture search of dynamic cells for semantic video segmentation. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1959–1968. https://doi.org/10.1109/WACV45572.2020.9093531
View More -
AQD: Towards Accurate Quantized Object Detection
Liu, J., Zhuang, B., Chen, P., Tan, M., & Shen, C. (2020). AQD: Towards Accurate Quantized Object Detection. Retrieved from http://arxiv.org/abs/2007.06919
View More -
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning
Liu, L., Lu, H., Zou, H., Xiong, H., Cao, Z., & Shen, C. (2020). Weighing Counts: Sequential Crowd Counting by Reinforcement Learning. http://arxiv.org/abs/2007.08260
View More -
GADE: A Generative Adversarial Approach to Density Estimation and its Applications.
Abbasnejad, M. E., Shi, J., van den Hengel, A., & Liu, L. (2020). GADE: A Generative Adversarial Approach to Density Estimation and its Applications. International Journal of Computer Vision, 128(10–11), 2731–2743. https://doi.org/10.1007/s11263-020-01360-9
View More -
Reverie: Remote embodied visual referring expression in real indoor environments
Qi, Y., Wu, Q., Anderson, P., Wang, X., Wang, W. Y., Shen, C., & Van Den Hengel, A. (2020). Reverie: Remote embodied visual referring expression in real indoor environments. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 9979–9988. https://doi.org/10.1109/CVPR42600.2020.01000
View More -
Training quantized neural networks with a full-precision auxiliary module
Zhuang, B., Liu, L., Tan, M., Shen, C., & Reid, I. (2020). Training quantized neural networks with a full-precision auxiliary module. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1485–1494. https://doi.org/10.1109/CVPR42600.2020.00156
View More -
A Robust Attentional Framework for License Plate Recognition in the Wild
Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., & Zhang, Y. (2020). A Robust Attentional Framework for License Plate Recognition in the Wild. IEEE Transactions on Intelligent Transportation Systems, 1–10. https://doi.org/10.1109/tits.2020.3000072
View More -
Quantum Robust Fitting
Chin, T.-J., Suter, D., Chng, S.-F., & Quach, J. (2020). Quantum Robust Fitting. Retrieved from http://arxiv.org/abs/2006.06986
View More -
FCOS: A Simple and Strong Anchor-free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence
Tian, Z., Shen, C., Chen, H., & He, T. (2020). FCOS: A Simple and Strong Anchor-free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3032166
View More -
Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection
Zhang, J., Xie, Y., Liao, Z., Pang, G., Verjans, J., Li, W., Sun, Z., He, J., Shen, C. & Xia, Y. (2020). Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection. Retrieved from http://arxiv.org/abs/2003.12338
View More -
Soft Expert Reward Learning for Vision-and-Language Navigation
Wang, H., Wu, Q., & Shen, C. (2020). Soft Expert Reward Learning for Vision-and-Language Navigation. Retrieved from http://arxiv.org/abs/2007.10835
View More -
Object-and-Action Aware Model for Visual Language Navigation
Qi, Y., Pan, Z., Zhang, S., Hengel, A. van den, & Wu, Q. (2020). Object-and-Action Aware Model for Visual Language Navigation. http://arxiv.org/abs/2007.14626
View More -
Improving Generative Adversarial Networks with Local Coordinate Coding
Cao, J., Guo, Y., Wu, Q., Shen, C., Huang, J., & Tan, M. (2020). Improving Generative Adversarial Networks with Local Coordinate Coding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3012096
View More -
Guided Co-Segmentation Network for Fast Video Object Segmentation
Liu, W., Lin, G., Zhang, T., & Liu, Z. (2020). Guided Co-Segmentation Network for Fast Video Object Segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 1–1. https://doi.org/10.1109/tcsvt.2020.3010293
View More -
AE TextSpotter: Learning Visual and Linguistic Representation for Ambiguous Text Spotting
Wang, W., Liu, X., Ji, X., Xie, E., Liang, D., Yang, Z., Lu, T., Shen, C., & Luo, P. (2020). AE TextSpotter: Learning Visual and Linguistic Representation for Ambiguous Text Spotting. Retrieved from http://arxiv.org/abs/2008.00714
View More -
Pairwise Relation Learning for Semi-supervised Gland Segmentation
Xie, Y., Zhang, J., Liao, Z., Verjans, J., Shen, C., & Xia, Y. (2020). Pairwise Relation Learning for Semi-supervised Gland Segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12265 LNCS, 417–427. https://doi.org/10.1007/978-3-030-59722-1_40
View More -
How Trustworthy are the Existing Performance Evaluations for Basic Vision Tasks?
Rezatofighi, H., Nguyen, T. T. D., Vo, B.-N., Vo, B.-T., Savarese, S., & Reid, I. (2020). How Trustworthy are the Existing Performance Evaluations for Basic Vision Tasks? Retrieved from http://arxiv.org/abs/2008.03533
View More -
A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots
Mao, J., Hu, X., Zhang, L., He, X., & Milford, M. (2020). A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 100(1), 289–310. https://doi.org/10.1007/s10846-020-01190-4
View More -
Towards Simulating Semantic Onboard UAV Navigation
Mandel, N., Alvarez, F. V., Milford, M., & Gonzalez, F. (2020, March 1). Towards Simulating Semantic Onboard UAV Navigation. IEEE Aerospace Conference Proceedings. https://doi.org/10.1109/AERO47225.2020.9172771
View More -
An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance
van Goor, P., Mahony, R., Hamel, T., & Trumpf, J. (2020). An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance. ArXiv. http://arxiv.org/abs/2005.14347
View More -
Fast postprocessing for difficult discrete energy minimization problems
Akhter, I., Cheong, L. F., & Hartley, R. (2020). Fast postprocessing for difficult discrete energy minimization problems. In Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020 (pp. 3462–3471).
View More -
Single Image Optical Flow Estimation with an Event Camera
Pan, L., Liu, M., & Hartley, R. (2020). Single Image Optical Flow Estimation with an Event Camera, CVPR 2020. http://arxiv.org/abs/2004.00347
View More -
A Stochastic Conditioning Scheme for Diverse Human Motion Prediction
Aliakbarian, S., Sadat, F., †1, S., Salzmann, M., Petersson, L., & Gould, S. (2020). A Stochastic Conditioning Scheme for Diverse Human Motion Prediction *. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5223–5232).
View More -
Blended convolution and synthesis for efficient discrimination of 3D shapes
Ramasinghe, S., Khan, S., Barnes, N., & Gould, S. (2020). Blended convolution and synthesis for efficient discrimination of 3D shapes. In Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020 (pp. 21–31).
View More -
Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution
Song, X., Dai, Y., Zhou, D., Liu, L., Li, W., Li, H., & Yang, R. (2020). Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
View More -
Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry
Zhou, D., Dai, Y., & Li, H. (2020). Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry. IEEE Transactions on Intelligent Transportation Systems, 21(2), 791–802. https://doi.org/10.1109/TITS.2019.2900330
View More -
Geometry to the Rescue : 3D Instance Reconstruction from a Cluttered Scene
Li, L., & Barnes, N. (2020). Geometry to the Rescue : 3D Instance Reconstruction from a Cluttered Scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
View More -
Guest Editorial: Special Issue on ACCV 2018
Jawahar, C. V., Li, H., Mori, G., & Schindler, K. (2020). Guest Editorial: Special Issue on ACCV 2018. International Journal of Computer Vision, 128(4), 909.
View More -
Proposal-free temporal moment localization of a natural-language query in video using guided attention
Rodriguez-Opazo, C., Marrese-Taylor, E., Saleh, F. S., Li, H., & Gould, S. (2020). Proposal-free temporal moment localization of a natural-language query in video using guided attention. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 2453–2462. https://doi.org/10.1109/WACV45572.2020.9093328
View More -
Rethinking Class Relations: Absolute-relative Few-shot Learning
Zhang, H., Torr, P. H. S., Li, H., Jian, S., & Koniusz, P. (2020). Rethinking Class Relations: Absolute-relative Few-shot Learning, 1–10.
View More -
The IKEA ASM Dataset: Understanding People Assembling Furniture through Actions, Objects and Pose
Ben-Shabat, Y., Yu, X., Saleh, F. S., Campbell, D., Rodriguez-Opazo, C., Li, H., & Gould, S. (2020). The IKEA ASM Dataset: Understanding People Assembling Furniture through Actions, Objects and Pose.
View More -
Understanding the Effects of Data Parallelism and Sparsity on Neural Network Training
Lee, N., Ajanthan, T., Torr, P. H. S., & Jaggi, M. (2020). Understanding the Effects of Data Parallelism and Sparsity on Neural Network Training.
View More -
VDO-SLAM: A Visual Dynamic Object-aware SLAM System
Zhang, J., Henein, M., Mahony, R., & Ila, V. (2020). VDO-SLAM: A Visual Dynamic Object-aware SLAM System.
View More -
Robust Ego and Object 6-DoF Motion Estimation and Tracking
Zhang, J., Henein, M., Mahony, R., & Viorela, I. (2020). Robust Ego and Object 6-DoF Motion Estimation and Tracking. IROS 2020.
View More -
Cost Volume Pyramid Based Depth Inference for Multi-View Stereo
Yang, J., Mao, W., Alvarez, J. M., & Liu, M. (2020). Cost volume pyramid based depth inference for multi-view stereo. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4876–4885. https://doi.org/10.1109/CVPR42600.2020.00493
View More -
From Depth What Can You See? Depth Completion via Auxiliary Image Reconstruction
Lu, K., Barnes, N., Anwar, S., & Zheng, L. (2020). From depth what can you see? Depth completion via auxiliary image reconstruction. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 11303–11312. https://doi.org/10.1109/CVPR42600.2020.01132
View More -
A Signal Propagation Perspective for Pruning Neural Networks at initialization
Lee, N., Ajanthan, T., Gould, S., & Torr, P. H. S. (2019). A Signal Propagation Perspective for Pruning Neural Networks at Initialization. ArXiv. http://arxiv.org/abs/1906.06307
View More -
Memorable Maps: A Framework for Re-Defining Places in Visual Place Recognition
Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. D. (2020). Memorable Maps: A Framework for Re-Defining Places in Visual Place Recognition. IEEE Transactions on Intelligent Transportation Systems, 1–15. https://doi.org/10.1109/tits.2020.3001228
View More -
Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision
Rosenberger, P., Cosgun, A., Newbury, R., Kwan, J., Ortenzi, V., Corke, P., & Grafinger, M. (2020). Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision. http://arxiv.org/abs/2006.01797
View More -
A Review of Current Approaches for UAV Autonomous Mission Planning for Mars Biosignatures Detection.
Serna, J. G., Vanegas, F., Gonzalez, F., & Flannery, D. (2020). A Review of Current Approaches for UAV Autonomous Mission Planning for Mars Biosignatures Detection. 1–15. https://doi.org/10.1109/aero47225.2020.9172467
View More -
Learning Landmark Guided Embeddings for Animal Re-identification
Moskvyak, O., Maire, F., Dayoub, F., & Baktashmotlagh, M. (2020). Learning Landmark Guided Embeddings for Animal Re-identification. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision Workshops, WACVW 2020, 12–19. https://doi.org/10.1109/WACVW50321.2020.9096932
View More -
A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded System on UAVs
Mandel, Nicolas & Milford, Michael & Gonzalez, Felipe. (2020). A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded System on UAVs. Sensors. 20. 4420. 10.3390/s20164420.
View More -
JFR special issue on agricultural robotics, part 2
Lehnert, C., McCool, C., Stachniss, C., Corke, P., Sa, I., Nieto, J., & Henten, E. J. (2020). JFR special issue on agricultural robotics, part 2. Journal of Field Robotics, 37(2), 185–186. https://doi.org/10.1002/rob.21939
View More -
Performance improvements of a sweet pepper harvesting robot in protected cropping environments
Lehnert, C., McCool, C., Sa, I., & Perez, T. (2020). Performance improvements of a sweet pepper harvesting robot in protected cropping environments. Journal of Field Robotics, rob.21973. https://doi.org/10.1002/rob.21973
View More -
Special issue on agricultural robotics
Lehnert, C., McCool, C., Corke, P., Sa, I., Stachniss, C., van Henten, E. J., & Nieto, J. (2020). Special issue on agricultural robotics. In Journal of Field Robotics (Vol. 37, Issue 1, pp. 5–6). John Wiley and Sons Inc. https://doi.org/10.1002/rob.21926
View More -
What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles
Jacobson, A., Zeng, F., Smith, D., Boswell, N., Peynot, T., & Milford, M. (2020). What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles. Journal of Field Robotics, rob.21978. https://doi.org/10.1002/rob.21978
View More -
Control of the Final-Phase of Closed-Loop Visual Grasping using Image-Based Visual Servoing
Haviland, J., Dayoub, F., & Corke, P. (2020). Control of the Final-Phase of Closed-Loop Visual Grasping using Image-Based Visual Servoing. http://arxiv.org/abs/2001.05650
View More -
Probabilistic object detection: Definition and evaluation
Hall, D., Dayoub, F., Skinner, J., Zhang, H., Miller, D., Corke, P., Carneiro, G., Angelova, A., & Sunderhauf, N. (2020). Probabilistic object detection: Definition and evaluation. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1020–1029. https://doi.org/10.1109/WACV45572.2020.9093599
View More -
Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency Detection
Zhang, J., Xie, J., & Barnes, N. (2020). Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency Detection. http://arxiv.org/abs/2007.12211
View More -
Learning Arbitrary-Goal Fabric Folding with One Hour of Real Robot Experience
Lee, R., Ward, D., Cosgun, A., Dasagi, V., Corke, P., & Leitner, J. (2020). Learning Arbitrary-Goal Fabric Folding with One Hour of Real Robot Experience. http://arxiv.org/abs/2010.03209
View More -
Self-Driving Vehicles: Key Technical Challenges and Progress off the Road
Milford, M., Anthony, S., & Scheirer, W. (2020). Self-Driving Vehicles: Key Technical Challenges and Progress off the Road. IEEE Potentials, 39(1), 37–45. https://doi.org/10.1109/MPOT.2019.2939376
View More -
Understanding the Importance of Heart Sound Segmentation for Heart Anomaly Detection
Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). Understanding the Importance of Heart Sound Segmentation for Heart Anomaly Detection. Retrieved from http://arxiv.org/abs/2005.10480
View More -
Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function
Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function. Computer Vision and Image Understanding, 102989. https://doi.org/10.1016/j.cviu.2020.102989
View More -
Autonomous UAV Navigation for Active Perception of Targets in Uncertain and Cluttered Environments
Sandino, J., Vanegas, F., Gonzalez, F., & Maire, F. (2020). Autonomous UAV Navigation for active perception of targets in uncertain and cluttered environments. Proceedings of 2020 IEEE Aerospace Conference.
View More -
Special Issue on Deep Learning for Robotic Vision
Angelova, A., Carneiro, G., Sünderhauf, N., & Leitner, J. (2020, May 1). Special Issue on Deep Learning for Robotic Vision. International Journal of Computer Vision. https://doi.org/10.1007/s11263-020-01324-z
View More -
VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change
Zaffar, M., Ehsan, S., Milford, M., Flynn, D., & McDonald-Maier, K. (2020). VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change. Retrieved from http://arxiv.org/abs/2005.08135
View More -
Online Inverse Optimal Control for Control-Constrained Discrete-Time Systems on Finite and Infinite Horizons
Molloy, T. L., Ford, J. J., & Perez, T. (2020). Online Inverse Optimal Control for Control-Constrained Discrete-Time Systems on Finite and Infinite Horizons. Proceedings of the IEEE Conference on Decision and Control, 2018-December, 1663–1668. Retrieved from http://arxiv.org/abs/2005.06153
View More -
Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017
Leitner, J., Morrison, D., Milan, A., Kelly-Boxall, N., McTaggart, M., Tow, A. W., & Corke, P. (2020). Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017. In Advances on Robotic Item Picking (pp. 125–148). https://doi.org/10.1007/978-3-030-35679-8_11
View More -
Active Preference Learning using Maximum Regret
Wilde, N., Kulic, D., & Smith, S. L. (2020). Active Preference Learning using Maximum Regret. http://arxiv.org/abs/2005.04067
View More -
Supportive Actions for Manipulation in Human-Robot Coworker Teams
Bansal, S., Newbury, R., Chan, W., Cosgun, A., Allen, A., Kulić, D., Drummond, D., & Isbell, C. (2020). Supportive Actions for Manipulation in Human-Robot Coworker Teams. Retrieved from http://arxiv.org/abs/2005.00769
View More -
Curiosity Notebook: A Platform for Learning by Teaching Conversational Agents
Law, E., Ravari, P. B., Chhibber, N., Kulic, D., Lin, S., Pantasdo, K. D., Ceha, J., Suh, S., & Dillen, N. (2020). Curiosity Notebook: A Platform for Learning by Teaching Conversational Agents. https://doi.org/10.1145/3334480.3382783
View More -
Haptics in Teleoperated Medical Interventions: Force Measurement, Haptic Interfaces and their Influence on User’s Performance
Abdi, E., Kulic, D., & Croft, E. (2020). Haptics in teleoperated medical interventions: Force measurement, haptic interfaces and their influence on users performance. IEEE Transactions on Biomedical Engineering, 1–1. https://doi.org/10.1109/tbme.2020.2987603
View More -
End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification
Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification. Retrieved from http://arxiv.org/abs/2005.03222
View More -
Context from within: Hierarchical context modeling for semantic segmentation
Nguyen, K., Fookes, C., & Sridharan, S. (2020). Context from within: Hierarchical context modeling for semantic segmentation. Pattern Recognition, 105, 107358. https://doi.org/10.1016/j.patcog.2020.107358
View More -
Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional Emotion Recognition
Nguyen, D., Nguyen, D. T., Zeng, R., Nguyen, T. T., Tran, S. N., Nguyen, T., Sridharan, S., & Fookes, C. (2020). Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional Emotion Recognition.
View More -
Attention Driven Fusion for Multi-Modal Emotion Recognition
Priyasad, D., Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020, April 9). Attention Driven Fusion for Multi-Modal Emotion Recognition. 3227–3231. https://doi.org/10.1109/icassp40776.2020.9054441
View More -
Neural Memory Plasticity for Medical Anomaly Detection
Fernando, T., Denman, S., Ahmedt-Aristizabal, D., Sridharan, S., Laurens, K. R., Johnston, P., & Fookes, C. (2020). Neural memory plasticity for medical anomaly detection. Neural Networks, 127, 67–81. https://doi.org/10.1016/j.neunet.2020.04.011
View More -
Identification of Children At Risk of Schizophrenia via Deep Learning and EEG Responses
Ahmedt Aristizabal, D., Fernando, T., Denman, S., Robinson, J. E., Sridharan, S., Johnston, P. J., Laurens, K.R., & Fookes, C. (2020). Identification of Children At Risk of Schizophrenia via Deep Learning and EEG Responses. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2020.2984238
View More -
Bio-inspired multi-scale fusion
Hausler, S., Chen, Z., Hasselmo, M. E., & Milford, M. (2020). Bio-inspired multi-scale fusion. Biological Cybernetics, 114(2), 209–229. https://doi.org/10.1007/s00422-020-00831-z
View More -
Class Anchor Clustering: a Distance-based Loss for Training Open Set Classifiers
Miller, D., Sünderhauf, N., Milford, M., & Dayoub, F. (2020). Class Anchor Clustering: a Distance-based Loss for Training Open Set Classifiers. Retrieved from http://arxiv.org/abs/2004.02434
View More -
Counting Objects by Blockwise Classification
Liu, L., Lu, H., Xiong, H., Xian, K., Cao, Z., & Shen, C. (2020). Counting objects by blockwise classification. IEEE Transactions on Circuits and Systems for Video Technology, 30(10), 3513–3527. https://doi.org/10.1109/TCSVT.2019.2942970
View More -
Learning to Place Objects onto Flat Surfaces in Human-Preferred Orientations
Newbury, R., He, K., Cosgun, A., & Drummond, T. (2020). Learning to Place Objects onto Flat Surfaces in Human-Preferred Orientations. Retrieved from http://arxiv.org/abs/2004.00249
View More -
Low-cost sensors as an alternative for long-term air quality monitoring
Liu, X., Jayaratne, R., Thai, P., Kuhn, T., Zing, I., Christensen, B., Lamont, R., Dunbabin, M., Zhu, S., Gao, J., Wainwright, D., Neale, D., Kan, R., Kirkwood, J., & Morawska, L. (2020). Low-cost sensors as an alternative for long-term air quality monitoring. Environmental Research, 185, 109438. https://doi.org/10.1016/j.envres.2020.109438
View More -
Joint Deep Cross-Domain Transfer Learning for Emotion Recognition
Nguyen, D., Sridharan, S., Nguyen, D. T., Denman, S., Tran, S. N., Zeng, R., & Fookes, C. (2020). Joint Deep Cross-Domain Transfer Learning for Emotion Recognition. (2018). Retrieved from http://arxiv.org/abs/2003.11136
View More -
A Software System for Human-Robot Interaction To Collect Research Data: A HTML/Javascript Service on the Pepper Robot
Suddrey, G., & Robinson, N. (2020). A Software System for Human-Robot Interaction To Collect Research Data. Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 459–461. https://doi.org/10.1145/3371382.3378287
View More -
How to Train Your Event Camera Neural Network
Stoffregen, T., Scheerlinck, C., Scaramuzza, D., Drummond, T., Barnes, N., Kleeman, L., & Mahony, R. (2020). How to Train Your Event Camera Neural Network. Retrieved from http://arxiv.org/abs/2003.09078
View More -
DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares
Ben-Shabat Y., Gould S. (2020) DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_2
View More -
High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks
Pfister, F. M. J., Um, T. T., Pichler, D. C., Goschenhofer, J., Abedinpour, K., Lang, M., Endo, S., Ceballos-Baumann, A. O., Hirche, S., Bischl, B., Kulić, D., & Fietzek, U. M. (2020). High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks. Scientific Reports, 10(1), 5860. https://doi.org/10.1038/s41598-020-61789-3
View More -
Generative Low-bitwidth Data Free Quantization
Xu, S., Li, H., Zhuang, B., Liu, J., Cao, J., Liang, C., & Tan, M. (2020). Generative Low-bitwidth Data Free Quantization. Retrieved from http://arxiv.org/abs/2003.03603
View More -
Efficient Semantic Video Segmentation with Per-frame Inference
Liu, Y., Shen, C., Yu, C., & Wang, J. (2020). Efficient Semantic Video Segmentation with Per-frame Inference. Retrieved from https://tinyurl.com/segment-video
View More -
PAC-Bayesian Meta-learning with Implicit Prior
Nguyen, C., Do, T.-T., & Carneiro, G. (2020). PAC-Bayesian Meta-learning with Implicit Prior. Retrieved from http://arxiv.org/abs/2003.02455
View More -
Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy
"Gustavo Carneiro, Leonardo Zorron Cheng Tao Pu, Rajvinder Singh, Alastair Burt,
View More
Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy,
Medical Image Analysis,Volume 62,2020,101653,ISSN 1361-8415,https://doi.org/10.1016/j.media.2020.101653." -
ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
Liu, Y., Chen, H., Shen, C., He, T., Jin, L., & Wang, L. (2020). ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network. Retrieved from http://arxiv.org/abs/2002.10200
View More -
Globally Optimal Contrast Maximisation for Event-based Motion Estimation
Liu, D., Parra, Á., & Chin, T.-J. (2020). Globally Optimal Contrast Maximisation for Event-based Motion Estimation. Retrieved from http://arxiv.org/abs/2002.10686
View More -
On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering
Wang, X., Liu, Y., Shen, C., Ng, C. C., Luo, C., Jin, L., Chan, C. S., van den Hengel, A., & Wang, L. (2020). On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering. Retrieved from http://arxiv.org/abs/2002.10215
View More -
Learning Deep Gradient Descent Optimization for Image Deconvolution
Gong, D., Zhang, Z., Shi, Q., Van Den Hengel, A., Shen, C., & Zhang, Y. (2020). Learning Deep Gradient Descent Optimization for Image Deconvolution. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5468–5482. https://doi.org/10.1109/TNNLS.2020.2968289
View More -
3D Gated Recurrent Fusion for Semantic Scene Completion
Liu, Y., Li, J., Yan, Q., Yuan, X., Zhao, C., Reid, I., & Cadena, C. (2020). 3D Gated Recurrent Fusion for Semantic Scene Completion. Retrieved from http://arxiv.org/abs/2002.07269
View More -
Hyperspectral Classification Based on 3D Asymmetric Inception Network with Data Fusion Transfer Learning
Zhang, H., Liu, Y., Fang, B., Li, Y., Liu, L., & Reid, I. (2020). Hyperspectral Classification Based on 3D Asymmetric Inception Network with Data Fusion Transfer Learning. Retrieved from https://github.com/UniLauX/AINet
View More -
DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data
Yin, W., Wang, X., Shen, C., Liu, Y., Tian, Z., Xu, S., Sun, C., & Renyin, D. (2020). DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data. Retrieved from http://arxiv.org/abs/2002.00569
View More -
Learn to Predict Sets Using Feed-Forward Neural Networks
Rezatofighi, H., Kaskman, R., Motlagh, F. T., Shi, Q., Milan, A., Cremers, D., Leal-Taixé, L., & Reid, I. (2020). Learn to Predict Sets Using Feed-Forward Neural Networks. Retrieved from http://arxiv.org/abs/2001.11845
View More -
Separating Content from Style Using Adversarial Learning for Recognizing Text in the Wild
Luo, C., Lin, Q., Liu, Y., Jin, L., & Shen, C. (2020). Separating Content from Style Using Adversarial Learning for Recognizing Text in the Wild. Retrieved from http://arxiv.org/abs/2001.04189
View More -
Memorizing Comprehensively to Learn Adaptively: Unsupervised Cross-Domain Person Re-ID with Multi-level Memory
Zhang, X., Gong, D., Cao, J., & Shen, C. (2020). Memorizing Comprehensively to Learn Adaptively: Unsupervised Cross-Domain Person Re-ID with Multi-level Memory. Retrieved from http://arxiv.org/abs/2001.04123
View More -
From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting
Xiong, H., Lu, H., Liu, C., Liu, L., Shen, C., & Cao, Z. (2020). From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting. Retrieved from https://tinyurl.com/SS-DCNet.
View More -
Learning and Memorizing Representative Prototypes for 3D Point Cloud Semantic and Instance Segmentation
He, T., Gong, D., Tian, Z., & Shen, C. (2020). Learning and Memorizing Representative Prototypes for 3D Point Cloud Semantic and Instance Segmentation.
View More -
Learning to Zoom-in via Learning to Zoom-out: Real-world Super-resolution by Generating and Adapting Degradation
Gong, D., Sun, W., Shi, Q., Van Den Hengel, A., & Zhang, Y. (2020). Learning to Zoom-in via Learning to Zoom-out: Real-world Super-resolution by Generating and Adapting Degradation.https://arxiv.org/pdf/2001.02381.pdf
View More -
Discrimination-aware Network Pruning for Deep Model Compression
Liu, J., Zhuang, B., Zhuang, Z., Guo, Y., Huang, J., Zhu, J., & Tan, M. (2020). Discrimination-aware Network Pruning for Deep Model Compression. Retrieved from https://github.com/SCUT-AILab/DCP.
View More -
BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation
Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., & Yan, Y. (2020). Blendmask: Top-down meets bottom-up for instance segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8570–8578. https://doi.org/10.1109/CVPR42600.2020.00860
View More -
Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images
Dunnhofer, M., Antico, M., Sasazawa, F., Takeda, Y., Camps, S., Martinel, N., Micheloni, C., Carneiro, G., & Fontanarosa, D. (2020). Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Medical Image Analysis, 60. https://doi.org/10.1016/j.media.2019.101631
View More -
Fast Image Reconstruction with an Event Camera
Scheerlinck, C., Rebecq, H., Gehrig, D., Barnes, N., Mahony, R. E., & Scaramuzza, D. (2020). Fast Image Reconstruction with an Event Camera. Retrieved from https://github.com/uzh-rpg/rpg
View More -
Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization
Hua, M. D., Trumpf, J., Hamel, T., Mahony, R., & Morin, P. (2020). Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization. Automatica, 115, 1–10.
View More -
Switchable Precision Neural Networks
Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Switchable Precision Neural Networks. Retrieved from http://arxiv.org/abs/2002.02815
View More -
Automatic Pruning for Quantized Neural Networks
Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Automatic Pruning for Quantized Neural Networks. Retrieved from http://arxiv.org/abs/2002.00523
View More -
OpenGAN: Open Set Generative Adversarial Networks
Ditria L., Meyer B.J., Drummond T. (2021) OpenGAN: Open Set Generative Adversarial Networks. In: Ishikawa H., Liu CL., Pajdla T., Shi J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science, vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_29
View More -
Low-cost PM2. 5 Sensors: An Assessment of Their Suitability for Various Applications
Jayaratne, R., Liu, X., Ahn, K.-H., Asumadu-Sakyi, A., Fisher, G., Gao, J., Mabon, A., Mazaheri, M., Mullins, B., Nyaku, M., Ristovki, Z., Scorgie, Y., Thai, P., Dunbabin, M., & Morawska, L. (2020). Low-cost PM 2.5 Sensors: An Assessment of their Suitability for Various Applications. Aerosol and Air Quality Research, 20, 520–532. https://doi.org/10.4209/aaqr.2018.10.0390
View More -
String stable integral control of vehicle platoons with disturbances
Silva, G. F., Donaire, A., McFadyen, A., & Ford, J. (2020). String stable integral control of vehicle platoons with disturbances. Retrieved from http://arxiv.org/abs/2002.09666
View More -
Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats
Sekar, S., Panchal, S. K., Ghattamaneni, N. K., Brown, L., Crawford, R., Xiao, Y., & Prasadam, I. (2020). Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients, 12(2), 509. https://doi.org/10.3390/nu12020509
View More -
Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning
Jonmohamadi, Y., Takeda, Y., Liu, F., Sasazawa, F., Maicas, G., Crawford, R., Roberts, J., Pandey, A.K., & Carneiro, G. (2020). Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning. IEEE Access, 1–1. https://doi.org/10.1109/access.2020.2980025
View More -
Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
Schaffter, T., Buist, D. S. M., Lee, C. I., Nikulin, Y., Ribli, D., Guan, Y., … Jung, H. (2020). Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 3(3), e200265. https://doi.org/10.1001/jamanetworkopen.2020.0265
View More -
LSTM guided ensemble correlation filter tracking with appearance model pool
Jain, M., Subramanyam, A. V., Denman, S., Sridharan, S., & Fookes, C. (2020). LSTM guided ensemble correlation filter tracking with appearance model pool. Computer Vision and Image Understanding, 195, 102935. https://doi.org/10.1016/j.cviu.2020.102935
View More -
Semantic Consistency and Identity Mapping Multi-Component Generative Adversarial Network for Person Re-Identification
Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Semantic Consistency and Identity Mapping Multi-Component Generative Adversarial Network for Person Re-Identification.
View More -
A Multiple Decoder CNN for Inverse Consistent 3D Image Registration
Nazib, A., Fookes, C., Salvado, O., & Perrin, D. (2020). A Multiple Decoder CNN for Inverse Consistent 3D Image Registration. Retrieved from http://arxiv.org/abs/2002.06468
View More -
Enhancing Feature Invariance with Learned Image Transformations for Image Retrieval
Tursun, O., Denman, S., Sridharan, S., & Fookes, C. (2020). Enhancing Feature Invariance with Learned Image Transformations for Image Retrieval. Retrieved from http://arxiv.org/abs/2002.01642
View More -
EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility in robotic manipulation
Morrison, D., Corke, P., & Leitner, J. (2020). EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility in robotic manipulation. Retrieved from http://arxiv.org/abs/2003.01314
View More -
Maximising Manipulability During Resolved-Rate Motion Control
Haviland, J., & Corke, P. (2020). Maximising Manipulability During Resolved-Rate Motion Control. Retrieved from http://arxiv.org/abs/2002.11901
View More -
Robot Navigation in Unseen Spaces using an Abstract Map
Talbot, B., Dayoub, F., Corke, P., & Wyeth, G. (2020). Robot Navigation in Unseen Spaces using an Abstract Map. Retrieved from http://arxiv.org/abs/2001.11684
View More -
Multiplicative Controller Fusion: A Hybrid Navigation Strategy For Deployment in Unknown Environments
Rana, K., Dasagi, V., Talbot, B., Milford, M., & Sünderhauf, N. (2020). Multiplicative Controller Fusion: A Hybrid Navigation Strategy For Deployment in Unknown Environments. Retrieved from http://arxiv.org/abs/2003.05117
View More -
MVP: Unified Motion and Visual Self-Supervised Learning for Large-Scale Robotic Navigation
Chancán, M., & Milford, M. (2020). MVP: Unified Motion and Visual Self-Supervised Learning for Large-Scale Robotic Navigation. Retrieved from http://arxiv.org/abs/2003.00667
View More -
Hierarchical Multi-Process Fusion for Visual Place Recognition
Hausler, S., & Milford, M. (2020). Hierarchical Multi-Process Fusion for Visual Place Recognition. Retrieved from http://arxiv.org/abs/2002.03895
View More -
A Hybrid Compact Neural Architecture for Visual Place Recognition
Chancan, M., Hernandez-Nunez, L., Narendra, A., Barron, A. B., & Milford, M. (2020). A Hybrid compact neural architecture for visual place recognition. IEEE Robotics and Automation Letters, 5(2), 993–1000. https://doi.org/10.1109/LRA.2020.2967324
View More -
Exploring Performance Bounds of Visual Place Recognition Using Extended Precision
Ferrarini, B., Waheed, M., Waheed, S., Ehsan, S., Milford, M. J., & McDonald-Maier, K. D. (2020). Exploring performance bounds of visual place recognition using extended precision. IEEE Robotics and Automation Letters, 5(2), 1688–1695. https://doi.org/10.1109/LRA.2020.2969197
View More -
CoHOG: A Light-Weight, Compute-Efficient, and Training-Free Visual Place Recognition Technique for Changing Environments
Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. (2020). CoHOG: A light-weight, compute-efficient, and training-free visual place recognition technique for changing environments. IEEE Robotics and Automation Letters, 5(2), 1835–1842. https://doi.org/10.1109/LRA.2020.2969917
View More -
Model-free vision-based shaping of deformable plastic materials
Cherubini, A., Ortenzi, V., Cosgun, A., Lee, R., & Corke, P. (2020). Model-free vision-based shaping of deformable plastic materials. The International Journal of Robotics Research, 027836492090768. https://doi.org/10.1177/0278364920907684
View More -
Deep Clustering With Sample-Assignment Invariance Prior
Peng, X., Zhu, H., Feng, J., Shen, C., Zhang, H., & Zhou, J. T. (2020). Deep Clustering with Sample-Assignment Invariance Prior. IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4857–4868. https://doi.org/10.1109/TNNLS.2019.2958324
View More -
Multiple Instance Learning with Emerging Novel Class
Wei, X.-S., Ye, H.-J., Mu, X., Wu, J., Shen, C., & Zhou, Z.-H. (2019). Multiple Instance Learning with Emerging Novel Class. IEEE Transactions on Knowledge and Data Engineering, 1–1. https://doi.org/10.1109/tkde.2019.2952588
View More -
Joint Deep Learning of Facial Expression Synthesis and Recognition
Yan, Y., Huang, Y., Chen, S., Shen, C., & Wang, H. (2020). Joint Deep Learning of Facial Expression Synthesis and Recognition. IEEE Transactions on Multimedia, 22(11), 2792–2807. https://doi.org/10.1109/TMM.2019.2962317
View More -
Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces
Yu, X., Shiri, F., Ghanem, B., & Porikli, F. (2020). Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(9), 2148–2164. https://doi.org/10.1109/TPAMI.2019.2914039
View More -
Hierarchical Attention Network for Action Segmentation
Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2020). Hierarchical Attention Network for Action Segmentation. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2020.01.023
View More -
Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach
Park, C., Moghadam, P., Kim, S., Sridharan, S., & Fookes, C. (2020). Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach. IEEE Robotics and Automation Letters, 1–1. https://doi.org/10.1109/LRA.2020.2969164
View More -
Bacterial Profile, Multi-Drug Resistance and Seasonality Following Lower Limb Orthopaedic Surgery in Tropical and Subtropical Australian Hospitals: An Epidemiological Cohort Study
Vickers, M. L., Ballard, E. L., Harris, P. N. A., Knibbs, L. D., Jaiprakash, A., Dulhunty, J. M., … Parkinson, B. (2020). Bacterial Profile, Multi-Drug Resistance and Seasonality Following Lower Limb Orthopaedic Surgery in Tropical and Subtropical Australian Hospitals: An Epidemiological Cohort Study. International Journal of Environmental Research and Public Health, 17(2), 657. https://doi.org/10.3390/ijerph17020657
View More -
Deep learning for US image quality assessment based on femoral cartilage boundaries detection in autonomous knee arthroscopy
Antico, M., Fontanarosa, D., Carneiro, G., Vukovic, D., Camps, S. M., Sasazawa, F., … Crawford, R. (2020). Deep learning for US image quality assessment based on femoral cartilage boundaries detection in autonomous knee arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. https://doi.org/10.1109/TUFFC.2020.2965291
View More -
Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations
Garg, S., & Milford, M. (2020). Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations. Retrieved from http://arxiv.org/abs/2001.08434
View More -
Towards Surgical Robots: Understanding Interaction Challenges in Knee Surgery
Opie, J., Jaiprakash, A., Ploderer, B., Brereton, M., & Roberts, J. (2019). Towards Surgical Robots. Proceedings of the 31st Australian Conference on Human-Computer-Interaction, 255–265. https://doi.org/10.1145/3369457.3370916
View More -
Close-Proximity Underwater Terrain Mapping Using Learning-based Coarse Range Estimation
Arain, B., Dayoub, F., Rigby, P., & Dunbabin, M. (2020). Close-Proximity Underwater Terrain Mapping Using Learning-based Coarse Range Estimation. Retrieved from http://arxiv.org/abs/2001.00330
View More -
A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS
Hinas, A., Ragel, R., Roberts, J., & Gonzalez, F. (2020). A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS. Sensors, 20(1), 272. https://doi.org/10.3390/s20010272
View More -
Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control
Molloy, T. L., Inga, J., Flad, M., Ford, J. J., Perez, T., & Hohmann, S. (2020). Inverse open-loop noncooperative differential games and inverse optimal control. IEEE Transactions on Automatic Control, 65(2), 897–904. https://doi.org/10.1109/TAC.2019.2921835
View More -
An Update on Retinal Prostheses
Ayton, L. N., Barnes, N., Dagnelie, G., Fujikado, T., Goetz, G., Hornig, R., Jones, B. W., Muqit, M. M. K., Rathbun, D. L., Stingl, K., Weiland, J. D., & Petoe, M. A. (2020). An update on retinal prostheses. In Clinical Neurophysiology (Vol. 131, Issue 6, pp. 1383–1398). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2019.11.029
View More -
Correlation-aware Adversarial Domain Adaptation and Generalization
Rahman, M. M., Fookes, C., Baktashmotlagh, M., & Sridharan, S. (2019). Correlation-aware Adversarial Domain Adaptation and Generalization. Pattern Recognition, 107124. https://doi.org/10.1016/j.patcog.2019.107124
View More -
Heart Sound Segmentation using Bidirectional LSTMs with Attention
Fernando, T., Ghaemmaghami, H., Denman, S., Sridharan, S., Hussain, N., & Fookes, C. (2020). Heart Sound Segmentation Using Bidirectional LSTMs with Attention. IEEE Journal of Biomedical and Health Informatics, 24(6), 1601–1609. https://doi.org/10.1109/JBHI.2019.2949516
View More -
Joint Stereo Video Deblurring, Scene Flow Estimation and Moving Object Segmentation
Pan, L., Dai, Y., Liu, M., Porikli, F., & Pan, Q. (2020). Joint stereo video deblurring, scene flow estimation and moving object segmentation. IEEE Transactions on Image Processing, 29, 1748–1761. https://doi.org/10.1109/TIP.2019.2945867
View More -
REFUGE Challenge: A Unified Framework for Evaluating Automated Methods for Glaucoma Assessment from Fundus Photographs
Orlando, J. I., Fu, H., Barbossa Breda, J., van Keer, K., Bathula, D. R., Diaz-Pinto, A., Fang, R., Heng, P-A., Kim, J., Lee, J., Lee, J., Li, X., Liu, P., Lu, S., Murugesan, B., Naranjo, V., Phaye, S S R., Shankaranarayana, S., Sikka, A., Son,J., van den Hengel, A., Wang, S., Wu, J., Wu, Z., Xu, G., Xu, Y., Yin, P., Li, F., Zhang, X., Yanwu, X., Bogunović, H. (2020). REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis, 59, 101570. https://doi.org/10.1016/j.media.2019.101570
View More -
A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold
Gao, Z., Wu, Y., Harandi, M., & Jia, Y. (2020). A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3230–3244. https://doi.org/10.1109/TNNLS.2019.2939177
View More -
Robotic and Image-Guided Knee Arthroscopy
Wu, L., Jaiprakash, A., Pandey, A. K., Fontanarosa, D., Jonmohamadi, Y., Antico, M., Strydom, M., Razjigaev, A., Sasazawa, F., Roberts, J., & Crawford, R. (2020). Robotic and Image-Guided Knee Arthroscopy. In Handbook of Robotic and Image-Guided Surgery (pp. 493–514). https://doi.org/10.1016/b978-0-12-814245-5.00029-3
View More -
V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices
Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., & van den Hengel, A. (2020). V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 12071-12078. https://doi.org/10.1609/aaai.v34i07.6885
View More
-
Model-free Tracker for Multiple Objects Using Joint Appearance and Motion Inference
Liu, C., Yao, R., Rezatofighi, S. H., Reid, I., & Shi, Q. (2020). Model-Free Tracker for Multiple Objects Using Joint Appearance and Motion Inference. IEEE Transactions on Image Processing, 29, 277–288. https://doi.org/10.1109/TIP.2019.2928123
View More -
One shot segmentation: unifying rigid detection and non-rigid segmentation using elastic regularization
Nascimento, J. C., & Carneiro, G. (2020). One Shot Segmentation: Unifying Rigid Detection and Non-Rigid Segmentation Using Elastic Regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12), 3054–3070. https://doi.org/10.1109/TPAMI.2019.2922959
View More -
Learning Distilled Graph for Large-scale Social Network Data Clusterin
Liu, W., Gong, D., Tan, M., Shi, Q., Yang, Y., & Hauptmann, A. G. (2019). Learning Distilled Graph for Large-scale Social Network Data Clustering. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2019.2904068
View More -
Architecture Search of Dynamic Cells for Semantic Video Segmentation
Nekrasov, V., Chen, H., Shen, C., & Reid, I. (2020). Architecture Search of Dynamic Cells for Semantic Video Segmentation.
View More -
Template-Based Automatic Search of Compact Semantic Segmentation Architectures
Nekrasov, V., Shen, C., & Reid, I. (2020). Template-Based Automatic Search of Compact Semantic Segmentation Architectures.
View More
Books
-
Curiosity Notebook: A Platform for Learning by Teaching Conversational Agents
Law, E., Ravari, P. B., Chhibber, N., Kulic, D., Lin, S., Pantasdo, K. D., Ceha, J., Suh, S., & Dillen, N. (2020). Curiosity Notebook: A Platform for Learning by Teaching Conversational Agents. https://doi.org/10.1145/3334480.3382783
View More
Book Chapters
-
Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017
Leitner, J., Morrison, D., Milan, A., Kelly-Boxall, N., McTaggart, M., Tow, A. W., & Corke, P. (2020). Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017. In Advances on Robotic Item Picking (pp. 125–148). https://doi.org/10.1007/978-3-030-35679-8_11
View More -
Towards Surgical Robots: Understanding Interaction Challenges in Knee Surgery
Opie, J., Jaiprakash, A., Ploderer, B., Brereton, M., & Roberts, J. (2019). Towards Surgical Robots. Proceedings of the 31st Australian Conference on Human-Computer-Interaction, 255–265. https://doi.org/10.1145/3369457.3370916
View More -
Robotic and Image-Guided Knee Arthroscopy
Wu, L., Jaiprakash, A., Pandey, A. K., Fontanarosa, D., Jonmohamadi, Y., Antico, M., Strydom, M., Razjigaev, A., Sasazawa, F., Roberts, J., & Crawford, R. (2020). Robotic and Image-Guided Knee Arthroscopy. In Handbook of Robotic and Image-Guided Surgery (pp. 493–514). https://doi.org/10.1016/b978-0-12-814245-5.00029-3
View More
Journal Articles
-
Fracture-related infection: current methods for prevention and treatment
Foster, A. L., Moriarty, T. F., Trampuz, A., Jaiprakash, A., Burch, M. A., Crawford, R., Paterson, D. L., Metsemakers, W-J., Schuetz, M., & Richards, R. G. (2020). Fracture-related infection: current methods for prevention and treatment. Expert Review of Anti-Infective Therapy, 18(4), 307–321. https://doi.org/10.1080/14787210.2020.1729740
View More -
On the informativeness of measurements in Shiryaev’s Bayesian quickest change detectio
Ford, J. J., James, J., & Molloy, T. L. (2020). On the informativeness of measurements in Shiryaev’s Bayesian quickest change detection. Automatica, 111, 108645. https://doi.org/10.1016/j.automatica.2019.108645
View More -
Event-based visual place recognition with ensembles of temporal windows
Fischer, T., & Milford, M. (2020). Event-based visual place recognition with ensembles of temporal windows. IEEE Robotics and Automation Letters, 5(4), 6924–6931. https://doi.org/10.1109/LRA.2020.3025505
View More -
Preliminary study of the Intel RealSenseTM D415 camera for monitoring respiratory like motion of an irregular surface
Fielding, A. L., Pandey, A. K., Jonmohamadi, Y., Via, R., Weber, D. C., Lomax, A. J., & Fattori, G. (2020). Preliminary study of the Intel RealSenseTM D415 camera for monitoring respiratory like motion of an irregular surface. IEEE Sensors Journal, 1–1. https://doi.org/10.1109/jsen.2020.2993264
View More -
Temporarily-Aware Context Modeling Using Generative Adversarial Networks for Speech Activity Detection
Fernando, T., Sridharan, S., McLaren, M., Priyasad, D., Denman, S., & Fookes, C. (2020). Temporarily-Aware Context Modeling Using Generative Adversarial Networks for Speech Activity Detection. IEEE/ACM Transactions on Audio Speech and Language Processing, 28, 1159–1169. https://doi.org/10.1109/TASLP.2020.2982297
View More -
Detection of Fake and Fraudulent Faces via Neural Memory Networks
Fernando, T., Fookes, C., Denman, S., & Sridharan, S. (2020). Detection of Fake and Fraudulent Faces via Neural Memory Networks. IEEE Transactions on Information Forensics and Security, 16, 1973–1988. https://doi.org/10.1109/TIFS.2020.3047768
View More -
Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion
Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020). Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion. IEEE Signal Processing Magazine, 38(1), 87–96. https://doi.org/10.1109/MSP.2020.2988287
View More -
From known to the unknown: Transferring knowledge to answer questions about novel visual and semantic concept
Farazi, M. R., Khan, S. H., & Barnes, N. (2020). From known to the unknown: Transferring knowledge to answer questions about novel visual and semantic concepts. Image and Vision Computing, 103, 103985. https://doi.org/10.1016/j.imavis.2020.103985
View More -
A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation
Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation. IEEE Journal of Biomedical and Health Informatics, 1–1. https://doi.org/10.1109/jbhi.2020.3027910
View More -
Domain Generalization in Biosignal Classification
Dissanayake, T., Fernando, T., Denman, S., Ghaemmaghami, H., Sridharan, S., & Fookes, C. (2020). Domain Generalization in Biosignal Classification. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2020.3045720
View More -
Increasing ventilator surge capacity in COVID 19 pandemic: Design, manufacture and in vitro-in vivo testing in anaesthetized healthy pigs of a rapid prototyped mechanical ventilator
Dhanani, J., Pang, G., Pincus, J., Ahern, B., Goodwin, W., Cowling, N., Whitten, G., Abdul-Aziz, M. H., Martin, S., Corke, P., & Laupland, K. B. (2020). Increasing ventilator surge capacity in COVID 19 pandemic: Design, manufacture and in vitro-in vivo testing in anaesthetized healthy pigs of a rapid prototyped mechanical ventilator. BMC Research Notes, 13(1), 1–6. https://doi.org/10.1186/s13104-020-05259-z
View More -
Towards Light‐Weight Portrait Matting via Parameter Sharing
Dai, Y., Lu, H., & Shen, C. (2020). Towards Light‐Weight Portrait Matting via Parameter Sharing. Computer Graphics Forum, cgf.14179. https://doi.org/10.1111/cgf.14179
View More -
The Outcome of Total Knee Arthroplasty With and Without Patellar Resurfacing up to 17 Years: A Report From the Australian Orthopaedic Association National Joint Replacement Registry
Coory, J. A., Tan, K. G., Whitehouse, S. L., Hatton, A., Graves, S. E., & Crawford, R. W. (2020). The Outcome of Total Knee Arthroplasty With and Without Patellar Resurfacing up to 17 Years: A Report From the Australian Orthopaedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(1), 132–138. https://doi.org/10.1016/j.arth.2019.08.007
View More -
Benchmarking Simulated Robotic Manipulation through a Real World Dataset
Collins, J., McVicar, J., Wedlock, D., Brown, R., Howard, D., & Leitner, J. (2020). Benchmarking Simulated Robotic Manipulation through a Real World Dataset. IEEE Robotics and Automation Letters, 5(1), 250–257. https://doi.org/10.1109/LRA.2019.2953663
View More -
Mortality and Implant Survival With Simultaneous and Staged Bilateral Total Hip Arthroplasty: Experience From the Australian Orthopedic Association National Joint Replacement Registry
Calabro, L., Yong, M., Whitehouse, S. L., Hatton, A., de Steiger, R., & Crawford, R. W. (2020). Mortality and Implant Survival With Simultaneous and Staged Bilateral Total Hip Arthroplasty: Experience From the Australian Orthopedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(9), 2518–2524. https://doi.org/10.1016/j.arth.2020.04.027
View More -
Fixation Method for Hip Arthroplasty Stem Following Hip Fracture: A Population-Level Cost-Effectiveness Analysis
Blythe, R., O’Gorman, P. M., Crawford, R. W., Feenan, R., Hatton, A., Whitehouse, S. L., & Graves, N. (2020). Fixation Method for Hip Arthroplasty Stem Following Hip Fracture: A Population-Level Cost-Effectiveness Analysis. Journal of Arthroplasty, 35(6), 1614–1621. https://doi.org/10.1016/j.arth.2020.02.001
View More -
Saliency Improvement in Feature-Poor Surgical Environments Using Local Laplacian of Specified Histograms
Banach, A., Strydom, M., Jaiprakash, A., Carneiro, G., Brown, C., Crawford, R., & McFadyen, A. (2020). Saliency Improvement in Feature-Poor Surgical Environments Using Local Laplacian of Specified Histograms. IEEE Access, 8, 213378–213388. https://doi.org/10.1109/ACCESS.2020.3040187
View More -
Effect of Gate Conductance on Hygroscopic Insulator Organic Field‐Effect Transistors
Arthur, J. N., Chaudhry, M. U., Woodruff, M. A., Pandey, A. K., & Yambem, S. D. (2020). Effect of Gate Conductance on Hygroscopic Insulator Organic Field‐Effect Transistors. Advanced Electronic Materials, 6(5), 1901079. https://doi.org/10.1002/aelm.201901079
View More -
Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy
Antico, M., Vukovic, D., Camps, S. M., Sasazawa, F., Takeda, Y., Le, A. T. H., Jaiprakash, A., Roberts, J., Crawford, R., Fontanarosa, D., & Carneiro, G. (2020). Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(12), 2543–2552. https://doi.org/10.1109/TUFFC.2020.2965291
View More -
4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study
Antico, M., Sasazawa, F., Takeda, Y., Jaiprakash, A. T., Wille, M. L., Pandey, A. K., Crawford, R., & Fontanarosa, D. (2020). 4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study. IEEE Access, 8, 146331–146341. https://doi.org/10.1109/ACCESS.2020.3014999
View More -
Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy
Antico, M., Sasazawa, F., Dunnhofer, M., Camps, S. M., Jaiprakash, A. T., Pandey, A. K., Crawford, R., Carneiro, G., & Fontanarosa, D. (2020). Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy. Ultrasound in Medicine and Biology, 46(2), 422–435. https://doi.org/10.1016/j.ultrasmedbio.2019.10.015
View More -
Supervised Scene Illumination Control in Stereo Arthroscopes for Robot Assisted Minimally Invasive Surgery
Ali, S., Jonmohamadi, Y., Takeda, Y., Roberts, J., Crawford, R., & Pandey, A. K. (2020). Supervised Scene Illumination Control in Stereo Arthroscopes for Robot Assisted Minimally Invasive Surgery. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2020.3037301
View More -
MobileFAN: Transferring Deep Hidden Representation for Face Alignment
Zhao, Y., Liu, Y., Shen, C., Gao, Y., & Xiong, S. (2020). MobileFAN: Transferring deep hidden representation for face alignment. Pattern Recognition, 100, 107114. https://doi.org/10.1016/j.patcog.2019.107114
View More -
Deep Multiphase Level Set for Scene Parsing
Zhang, P., Liu, W., Lei, Y., Wang, H., & Lu, H. (2020). Deep Multiphase Level Set for Scene Parsing. IEEE Transactions on Image Processing, 29, 4556–4567. https://doi.org/10.1109/TIP.2019.2957915
View More -
A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification
Xie, Y., Zhang, J., Xia, Y., & Shen, C. (2020). A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification. IEEE Transactions on Medical Imaging, 39(7), 2482–2493. https://doi.org/10.1109/TMI.2020.2972964
View More -
Improving user specifications for robot behavior through active preference learning: Framework and evaluation
Wilde, N., Blidaru, A., Smith, S. L., & Kulić, D. (2020). Improving user specifications for robot behavior through active preference learning: Framework and evaluation. The International Journal of Robotics Research, 39(6), 651–667. https://doi.org/10.1177/0278364920910802
View More -
Index Network
Lu, H., Dai, Y., Shen, C., & Xu, S. (2019, August 11). Index network. ArXiv. https://doi.org/10.1109/tpami.2020.3004474
View More -
A Generalized Framework for Edge-preserving and Structure-preserving Image Smoothing
Liu, W., Zhang, P., Huang, X., Yang, J., Shen, C., & Reid, I. (2019, July 22). A generalized framework for edge-preserving and structure-preserving image smoothing. ArXiv, Vol. 34, pp. 11620–11628. https://doi.org/10.1609/aaai.v34i07.6830
View More -
A Deep Journey into Super-resolution: A survey
Anwar, S., Khan, S., & Barnes, N. (2020, June 1). A Deep Journey into Super-resolution: A Survey. ACM Computing Surveys, Vol. 53, pp. 1–34. https://doi.org/10.1145/3390462
View More -
Densely Residual Laplacian Super-Resolution
Anwar, S., & Barnes, N. (2019, June 27). Densely Residual Laplacian Super-Resolution. ArXiv. https://doi.org/10.1109/tpami.2020.3021088
View More -
Component-based Attention for Large-scale Trademark Retrieval
Tursun, O., Denman, S., Sivapalan, S., Sridharan, S., Fookes, C., & Mau, S. (2019). Component-based Attention for Large-scale Trademark Retrieval. IEEE Transactions on Information Forensics and Security. https://doi.org/10.1109/TIFS.2019.2959921
View More -
Towards Effective Deep Embedding for Zero-Shot Learning
Zhang, L., Wang, P., Liu, L., Shen, C., Wei, W., Zhang, Y., & Van Den Hengel, A. (2020). Towards Effective Deep Embedding for Zero-Shot Learning. IEEE Transactions on Circuits and Systems for Video Technology, 30(9), 2843–2852. https://doi.org/10.1109/TCSVT.2020.2984666
View More -
Simultaneous compression and quantization: A joint approach for efficient unsupervised hashing
Hoang, T., Do, T. T., Le, H., Le-Tan, D. K., & Cheung, N. M. (2020). Simultaneous compression and quantization: A joint approach for efficient unsupervised hashing. Computer Vision and Image Understanding, 191, 102852. https://doi.org/10.1016/j.cviu.2019.102852
View More -
Events, Event Prediction, and Predictive Processing
Hohwy, J., Hebblewhite, A., & Drummond, T. (2020). Events, Event Prediction, and Predictive Processing. Topics in Cognitive Science, tops.12491. https://doi.org/10.1111/tops.12491
View More -
DGPose: Deep Generative Models for Human Body Analysis
de Bem, R., Ghosh, A., Ajanthan, T., Miksik, O., Boukhayma, A., Siddharth, N., & Torr, P. (2020). DGPose: Deep Generative Models for Human Body Analysis. International Journal of Computer Vision, 128(5), 1537–1563.
View More -
Real-time Image Smoothing via Iterative Least Squares
Liu, W., Zhang, P., Huang, X., Yang, J., Shen, C., & Reid, I. (2020). Real-time Image Smoothing via Iterative Least Squares. ACM Transactions on Graphics, 39(3), 1–24. https://doi.org/10.1145/3388887
View More -
OPMP: An Omni-directional Pyramid Mask Proposal Network for Arbitrary-shape Scene Text Detection
Zhang, S., Liu, Y., Jin, L., Wei, Z., & Shen, C. (2020). OPMP: An Omni-directional Pyramid Mask Proposal Network for Arbitrary-shape Scene Text Detection. IEEE Transactions on Multimedia, 1–1. https://doi.org/10.1109/TMM.2020.2978630
View More -
MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking
Dendorfer, P., Os̆ep, A., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S., & Leal-Taixé, L. (2021). MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking. International Journal of Computer Vision, 129(4), 845–881. https://doi.org/10.1007/s11263-020-01393-0
View More -
Multi-way backpropagation for training compact deep neural networks
Guo, Y., Chen, J., Du, Q., Van Den Hengel, A., Shi, Q., & Tan, M. (2020). Multi-way backpropagation for training compact deep neural networks. Neural Networks, 126, 250–261. https://doi.org/10.1016/j.neunet.2020.03.001
View More -
A Dynamic Parameter Enhanced Network for distant supervised relation extraction
Gou, Y., Lei, Y., Liu, L., Zhang, P., & Peng, X. (2020). A Dynamic Parameter Enhanced Network for distant supervised relation extraction. Knowledge-Based Systems, 197, 105912. https://doi.org/10.1016/j.knosys.2020.105912
View More -
Medical Data Inquiry Using a Question Answering Model
Liao, Z., Liu, L., Wu, Q., Teney, D., Shen, C., van den Hengel, A., & Verjans, J. (2020). Medical Data Inquiry Using a Question Answering Model. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020-April, 1490–1493. https://doi.org/10.1109/ISBI45749.2020.9098531
View More -
Scripted Video Generation With a Bottom-Up Generative Adversarial Network
Chen, Q., Wu, Q., Chen, J., Wu, Q., van den Hengel, A., & Tan, M. (2020). Scripted Video Generation With a Bottom-Up Generative Adversarial Network. IEEE Transactions on Image Processing, 29, 7454–7467. https://doi.org/10.1109/TIP.2020.3003227
View More -
Socially and Contextually Aware Human Motion and Pose Forecasting
Adeli, V., Adeli, E., Reid, I., Niebles, J. C., & Rezatofighi, H. (2020). Socially and Contextually Aware Human Motion and Pose Forecasting. IEEE Robotics and Automation Letters, 5(4), 6033–6040. https://doi.org/10.1109/LRA.2020.3010742
View More -
GADE: A Generative Adversarial Approach to Density Estimation and its Applications.
Abbasnejad, M. E., Shi, J., van den Hengel, A., & Liu, L. (2020). GADE: A Generative Adversarial Approach to Density Estimation and its Applications. International Journal of Computer Vision, 128(10–11), 2731–2743. https://doi.org/10.1007/s11263-020-01360-9
View More -
A Robust Attentional Framework for License Plate Recognition in the Wild
Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., & Zhang, Y. (2020). A Robust Attentional Framework for License Plate Recognition in the Wild. IEEE Transactions on Intelligent Transportation Systems, 1–10. https://doi.org/10.1109/tits.2020.3000072
View More -
FCOS: A Simple and Strong Anchor-free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence
Tian, Z., Shen, C., Chen, H., & He, T. (2020). FCOS: A Simple and Strong Anchor-free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3032166
View More -
Improving Generative Adversarial Networks with Local Coordinate Coding
Cao, J., Guo, Y., Wu, Q., Shen, C., Huang, J., & Tan, M. (2020). Improving Generative Adversarial Networks with Local Coordinate Coding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3012096
View More -
Guided Co-Segmentation Network for Fast Video Object Segmentation
Liu, W., Lin, G., Zhang, T., & Liu, Z. (2020). Guided Co-Segmentation Network for Fast Video Object Segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 1–1. https://doi.org/10.1109/tcsvt.2020.3010293
View More -
A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots
Mao, J., Hu, X., Zhang, L., He, X., & Milford, M. (2020). A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 100(1), 289–310. https://doi.org/10.1007/s10846-020-01190-4
View More -
Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry
Zhou, D., Dai, Y., & Li, H. (2020). Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry. IEEE Transactions on Intelligent Transportation Systems, 21(2), 791–802. https://doi.org/10.1109/TITS.2019.2900330
View More -
Memorable Maps: A Framework for Re-Defining Places in Visual Place Recognition
Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. D. (2020). Memorable Maps: A Framework for Re-Defining Places in Visual Place Recognition. IEEE Transactions on Intelligent Transportation Systems, 1–15. https://doi.org/10.1109/tits.2020.3001228
View More -
A Review of Current Approaches for UAV Autonomous Mission Planning for Mars Biosignatures Detection.
Serna, J. G., Vanegas, F., Gonzalez, F., & Flannery, D. (2020). A Review of Current Approaches for UAV Autonomous Mission Planning for Mars Biosignatures Detection. 1–15. https://doi.org/10.1109/aero47225.2020.9172467
View More -
A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded System on UAVs
Mandel, Nicolas & Milford, Michael & Gonzalez, Felipe. (2020). A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded System on UAVs. Sensors. 20. 4420. 10.3390/s20164420.
View More -
JFR special issue on agricultural robotics, part 2
Lehnert, C., McCool, C., Stachniss, C., Corke, P., Sa, I., Nieto, J., & Henten, E. J. (2020). JFR special issue on agricultural robotics, part 2. Journal of Field Robotics, 37(2), 185–186. https://doi.org/10.1002/rob.21939
View More -
Performance improvements of a sweet pepper harvesting robot in protected cropping environments
Lehnert, C., McCool, C., Sa, I., & Perez, T. (2020). Performance improvements of a sweet pepper harvesting robot in protected cropping environments. Journal of Field Robotics, rob.21973. https://doi.org/10.1002/rob.21973
View More -
Special issue on agricultural robotics
Lehnert, C., McCool, C., Corke, P., Sa, I., Stachniss, C., van Henten, E. J., & Nieto, J. (2020). Special issue on agricultural robotics. In Journal of Field Robotics (Vol. 37, Issue 1, pp. 5–6). John Wiley and Sons Inc. https://doi.org/10.1002/rob.21926
View More -
What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles
Jacobson, A., Zeng, F., Smith, D., Boswell, N., Peynot, T., & Milford, M. (2020). What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles. Journal of Field Robotics, rob.21978. https://doi.org/10.1002/rob.21978
View More -
Self-Driving Vehicles: Key Technical Challenges and Progress off the Road
Milford, M., Anthony, S., & Scheirer, W. (2020). Self-Driving Vehicles: Key Technical Challenges and Progress off the Road. IEEE Potentials, 39(1), 37–45. https://doi.org/10.1109/MPOT.2019.2939376
View More -
Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function
Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function. Computer Vision and Image Understanding, 102989. https://doi.org/10.1016/j.cviu.2020.102989
View More -
Special Issue on Deep Learning for Robotic Vision
Angelova, A., Carneiro, G., Sünderhauf, N., & Leitner, J. (2020, May 1). Special Issue on Deep Learning for Robotic Vision. International Journal of Computer Vision. https://doi.org/10.1007/s11263-020-01324-z
View More -
Haptics in Teleoperated Medical Interventions: Force Measurement, Haptic Interfaces and their Influence on User’s Performance
Abdi, E., Kulic, D., & Croft, E. (2020). Haptics in teleoperated medical interventions: Force measurement, haptic interfaces and their influence on users performance. IEEE Transactions on Biomedical Engineering, 1–1. https://doi.org/10.1109/tbme.2020.2987603
View More -
Context from within: Hierarchical context modeling for semantic segmentation
Nguyen, K., Fookes, C., & Sridharan, S. (2020). Context from within: Hierarchical context modeling for semantic segmentation. Pattern Recognition, 105, 107358. https://doi.org/10.1016/j.patcog.2020.107358
View More -
Neural Memory Plasticity for Medical Anomaly Detection
Fernando, T., Denman, S., Ahmedt-Aristizabal, D., Sridharan, S., Laurens, K. R., Johnston, P., & Fookes, C. (2020). Neural memory plasticity for medical anomaly detection. Neural Networks, 127, 67–81. https://doi.org/10.1016/j.neunet.2020.04.011
View More -
Identification of Children At Risk of Schizophrenia via Deep Learning and EEG Responses
Ahmedt Aristizabal, D., Fernando, T., Denman, S., Robinson, J. E., Sridharan, S., Johnston, P. J., Laurens, K.R., & Fookes, C. (2020). Identification of Children At Risk of Schizophrenia via Deep Learning and EEG Responses. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2020.2984238
View More -
Bio-inspired multi-scale fusion
Hausler, S., Chen, Z., Hasselmo, M. E., & Milford, M. (2020). Bio-inspired multi-scale fusion. Biological Cybernetics, 114(2), 209–229. https://doi.org/10.1007/s00422-020-00831-z
View More -
Counting Objects by Blockwise Classification
Liu, L., Lu, H., Xiong, H., Xian, K., Cao, Z., & Shen, C. (2020). Counting objects by blockwise classification. IEEE Transactions on Circuits and Systems for Video Technology, 30(10), 3513–3527. https://doi.org/10.1109/TCSVT.2019.2942970
View More -
Low-cost sensors as an alternative for long-term air quality monitoring
Liu, X., Jayaratne, R., Thai, P., Kuhn, T., Zing, I., Christensen, B., Lamont, R., Dunbabin, M., Zhu, S., Gao, J., Wainwright, D., Neale, D., Kan, R., Kirkwood, J., & Morawska, L. (2020). Low-cost sensors as an alternative for long-term air quality monitoring. Environmental Research, 185, 109438. https://doi.org/10.1016/j.envres.2020.109438
View More -
High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks
Pfister, F. M. J., Um, T. T., Pichler, D. C., Goschenhofer, J., Abedinpour, K., Lang, M., Endo, S., Ceballos-Baumann, A. O., Hirche, S., Bischl, B., Kulić, D., & Fietzek, U. M. (2020). High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks. Scientific Reports, 10(1), 5860. https://doi.org/10.1038/s41598-020-61789-3
View More -
Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy
"Gustavo Carneiro, Leonardo Zorron Cheng Tao Pu, Rajvinder Singh, Alastair Burt,
View More
Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy,
Medical Image Analysis,Volume 62,2020,101653,ISSN 1361-8415,https://doi.org/10.1016/j.media.2020.101653." -
Learning Deep Gradient Descent Optimization for Image Deconvolution
Gong, D., Zhang, Z., Shi, Q., Van Den Hengel, A., Shen, C., & Zhang, Y. (2020). Learning Deep Gradient Descent Optimization for Image Deconvolution. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5468–5482. https://doi.org/10.1109/TNNLS.2020.2968289
View More -
Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images
Dunnhofer, M., Antico, M., Sasazawa, F., Takeda, Y., Camps, S., Martinel, N., Micheloni, C., Carneiro, G., & Fontanarosa, D. (2020). Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Medical Image Analysis, 60. https://doi.org/10.1016/j.media.2019.101631
View More -
Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization
Hua, M. D., Trumpf, J., Hamel, T., Mahony, R., & Morin, P. (2020). Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization. Automatica, 115, 1–10.
View More -
Low-cost PM2. 5 Sensors: An Assessment of Their Suitability for Various Applications
Jayaratne, R., Liu, X., Ahn, K.-H., Asumadu-Sakyi, A., Fisher, G., Gao, J., Mabon, A., Mazaheri, M., Mullins, B., Nyaku, M., Ristovki, Z., Scorgie, Y., Thai, P., Dunbabin, M., & Morawska, L. (2020). Low-cost PM 2.5 Sensors: An Assessment of their Suitability for Various Applications. Aerosol and Air Quality Research, 20, 520–532. https://doi.org/10.4209/aaqr.2018.10.0390
View More -
Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats
Sekar, S., Panchal, S. K., Ghattamaneni, N. K., Brown, L., Crawford, R., Xiao, Y., & Prasadam, I. (2020). Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients, 12(2), 509. https://doi.org/10.3390/nu12020509
View More -
Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning
Jonmohamadi, Y., Takeda, Y., Liu, F., Sasazawa, F., Maicas, G., Crawford, R., Roberts, J., Pandey, A.K., & Carneiro, G. (2020). Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning. IEEE Access, 1–1. https://doi.org/10.1109/access.2020.2980025
View More -
Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms
Schaffter, T., Buist, D. S. M., Lee, C. I., Nikulin, Y., Ribli, D., Guan, Y., … Jung, H. (2020). Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 3(3), e200265. https://doi.org/10.1001/jamanetworkopen.2020.0265
View More -
LSTM guided ensemble correlation filter tracking with appearance model pool
Jain, M., Subramanyam, A. V., Denman, S., Sridharan, S., & Fookes, C. (2020). LSTM guided ensemble correlation filter tracking with appearance model pool. Computer Vision and Image Understanding, 195, 102935. https://doi.org/10.1016/j.cviu.2020.102935
View More -
A Hybrid Compact Neural Architecture for Visual Place Recognition
Chancan, M., Hernandez-Nunez, L., Narendra, A., Barron, A. B., & Milford, M. (2020). A Hybrid compact neural architecture for visual place recognition. IEEE Robotics and Automation Letters, 5(2), 993–1000. https://doi.org/10.1109/LRA.2020.2967324
View More -
Exploring Performance Bounds of Visual Place Recognition Using Extended Precision
Ferrarini, B., Waheed, M., Waheed, S., Ehsan, S., Milford, M. J., & McDonald-Maier, K. D. (2020). Exploring performance bounds of visual place recognition using extended precision. IEEE Robotics and Automation Letters, 5(2), 1688–1695. https://doi.org/10.1109/LRA.2020.2969197
View More -
CoHOG: A Light-Weight, Compute-Efficient, and Training-Free Visual Place Recognition Technique for Changing Environments
Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. (2020). CoHOG: A light-weight, compute-efficient, and training-free visual place recognition technique for changing environments. IEEE Robotics and Automation Letters, 5(2), 1835–1842. https://doi.org/10.1109/LRA.2020.2969917
View More -
Model-free vision-based shaping of deformable plastic materials
Cherubini, A., Ortenzi, V., Cosgun, A., Lee, R., & Corke, P. (2020). Model-free vision-based shaping of deformable plastic materials. The International Journal of Robotics Research, 027836492090768. https://doi.org/10.1177/0278364920907684
View More -
Deep Clustering With Sample-Assignment Invariance Prior
Peng, X., Zhu, H., Feng, J., Shen, C., Zhang, H., & Zhou, J. T. (2020). Deep Clustering with Sample-Assignment Invariance Prior. IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4857–4868. https://doi.org/10.1109/TNNLS.2019.2958324
View More -
Multiple Instance Learning with Emerging Novel Class
Wei, X.-S., Ye, H.-J., Mu, X., Wu, J., Shen, C., & Zhou, Z.-H. (2019). Multiple Instance Learning with Emerging Novel Class. IEEE Transactions on Knowledge and Data Engineering, 1–1. https://doi.org/10.1109/tkde.2019.2952588
View More -
Joint Deep Learning of Facial Expression Synthesis and Recognition
Yan, Y., Huang, Y., Chen, S., Shen, C., & Wang, H. (2020). Joint Deep Learning of Facial Expression Synthesis and Recognition. IEEE Transactions on Multimedia, 22(11), 2792–2807. https://doi.org/10.1109/TMM.2019.2962317
View More -
Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces
Yu, X., Shiri, F., Ghanem, B., & Porikli, F. (2020). Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(9), 2148–2164. https://doi.org/10.1109/TPAMI.2019.2914039
View More -
Hierarchical Attention Network for Action Segmentation
Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2020). Hierarchical Attention Network for Action Segmentation. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2020.01.023
View More -
Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach
Park, C., Moghadam, P., Kim, S., Sridharan, S., & Fookes, C. (2020). Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach. IEEE Robotics and Automation Letters, 1–1. https://doi.org/10.1109/LRA.2020.2969164
View More -
Bacterial Profile, Multi-Drug Resistance and Seasonality Following Lower Limb Orthopaedic Surgery in Tropical and Subtropical Australian Hospitals: An Epidemiological Cohort Study
Vickers, M. L., Ballard, E. L., Harris, P. N. A., Knibbs, L. D., Jaiprakash, A., Dulhunty, J. M., … Parkinson, B. (2020). Bacterial Profile, Multi-Drug Resistance and Seasonality Following Lower Limb Orthopaedic Surgery in Tropical and Subtropical Australian Hospitals: An Epidemiological Cohort Study. International Journal of Environmental Research and Public Health, 17(2), 657. https://doi.org/10.3390/ijerph17020657
View More -
Deep learning for US image quality assessment based on femoral cartilage boundaries detection in autonomous knee arthroscopy
Antico, M., Fontanarosa, D., Carneiro, G., Vukovic, D., Camps, S. M., Sasazawa, F., … Crawford, R. (2020). Deep learning for US image quality assessment based on femoral cartilage boundaries detection in autonomous knee arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. https://doi.org/10.1109/TUFFC.2020.2965291
View More -
A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS
Hinas, A., Ragel, R., Roberts, J., & Gonzalez, F. (2020). A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS. Sensors, 20(1), 272. https://doi.org/10.3390/s20010272
View More -
Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control
Molloy, T. L., Inga, J., Flad, M., Ford, J. J., Perez, T., & Hohmann, S. (2020). Inverse open-loop noncooperative differential games and inverse optimal control. IEEE Transactions on Automatic Control, 65(2), 897–904. https://doi.org/10.1109/TAC.2019.2921835
View More -
An Update on Retinal Prostheses
Ayton, L. N., Barnes, N., Dagnelie, G., Fujikado, T., Goetz, G., Hornig, R., Jones, B. W., Muqit, M. M. K., Rathbun, D. L., Stingl, K., Weiland, J. D., & Petoe, M. A. (2020). An update on retinal prostheses. In Clinical Neurophysiology (Vol. 131, Issue 6, pp. 1383–1398). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2019.11.029
View More -
Correlation-aware Adversarial Domain Adaptation and Generalization
Rahman, M. M., Fookes, C., Baktashmotlagh, M., & Sridharan, S. (2019). Correlation-aware Adversarial Domain Adaptation and Generalization. Pattern Recognition, 107124. https://doi.org/10.1016/j.patcog.2019.107124
View More -
Heart Sound Segmentation using Bidirectional LSTMs with Attention
Fernando, T., Ghaemmaghami, H., Denman, S., Sridharan, S., Hussain, N., & Fookes, C. (2020). Heart Sound Segmentation Using Bidirectional LSTMs with Attention. IEEE Journal of Biomedical and Health Informatics, 24(6), 1601–1609. https://doi.org/10.1109/JBHI.2019.2949516
View More -
REFUGE Challenge: A Unified Framework for Evaluating Automated Methods for Glaucoma Assessment from Fundus Photographs
Orlando, J. I., Fu, H., Barbossa Breda, J., van Keer, K., Bathula, D. R., Diaz-Pinto, A., Fang, R., Heng, P-A., Kim, J., Lee, J., Lee, J., Li, X., Liu, P., Lu, S., Murugesan, B., Naranjo, V., Phaye, S S R., Shankaranarayana, S., Sikka, A., Son,J., van den Hengel, A., Wang, S., Wu, J., Wu, Z., Xu, G., Xu, Y., Yin, P., Li, F., Zhang, X., Yanwu, X., Bogunović, H. (2020). REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis, 59, 101570. https://doi.org/10.1016/j.media.2019.101570
View More -
A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold
Gao, Z., Wu, Y., Harandi, M., & Jia, Y. (2020). A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3230–3244. https://doi.org/10.1109/TNNLS.2019.2939177
View More -
One shot segmentation: unifying rigid detection and non-rigid segmentation using elastic regularization
Nascimento, J. C., & Carneiro, G. (2020). One Shot Segmentation: Unifying Rigid Detection and Non-Rigid Segmentation Using Elastic Regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12), 3054–3070. https://doi.org/10.1109/TPAMI.2019.2922959
View More -
Learning Distilled Graph for Large-scale Social Network Data Clusterin
Liu, W., Gong, D., Tan, M., Shi, Q., Yang, Y., & Hauptmann, A. G. (2019). Learning Distilled Graph for Large-scale Social Network Data Clustering. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2019.2904068
View More
Conference Papers
-
Why are Generative Adversarial Networks so Fascinating and Annoying?
Faria, F. A., & Carneiro, G. (2020). Why are Generative Adversarial Networks so Fascinating and Annoying? Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020, 1–8. https://doi.org/10.1109/SIBGRAPI51738.2020.00009
View More -
Learning Object Relation Graph and Tentative Policy for Visual Navigation
Du H., Yu X., Zheng L. (2020) Learning Object Relation Graph and Tentative Policy for Visual Navigation. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_2
View More -
Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path
Deremetz, M., Lenain, R., Laneurit, J., Debain, C., & Peynot, T. (2020). Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path. CCTA 2020 - 4th IEEE Conference on Control Technology and Applications, 372–379. https://doi.org/10.1109/CCTA41146.2020.9206153
View More -
Shonan Rotation Averaging: Global Optimality by Surfing SO(p)n
Dellaert F., Rosen D.M., Wu J., Mahony R., Carlone L. (2020) Shonan Rotation Averaging: Global Optimality by Surfing SO(p)n. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_18
View More -
A robotic vision system for inspection of soiling at CSP plants
Coventry, J., Asselineau, C. A., Salahat, E., Raman, M. A., & Mahony, R. (2020). A robotic vision system for inspection of soiling at CSP plants. AIP Conference Proceedings, 2303(1), 100001. https://doi.org/10.1063/5.0029493
View More -
Towards a Multimodal System combining Augmented Reality and Electromyography for Robot Trajectory Programming and Execution
Chan, W. P., Sakr, M., Quintero, C. P., Croft, E., & Van Der Loos, H. F. M. H. (2020). Towards a Multimodal System combining Augmented Reality and Electromyography for Robot Trajectory Programming and Execution. 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, 419–424. https://doi.org/10.1109/RO-MAN47096.2020.9223526
View More -
Solving the Blind Perspective-n-Point Problem End-to-End with Robust Differentiable Geometric Optimization
Campbell D., Liu L., Gould S. (2020) Solving the Blind Perspective-n-Point Problem End-to-End with Robust Differentiable Geometric Optimization. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_15
View More -
A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps
Cagara, D., Dunbabin, M., & Rigby, P. (2020). A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps. Proceedings - IEEE International Conference on Robotics and Automation, 8573–8579. https://doi.org/10.1109/ICRA40945.2020.9196680
View More -
Neural Memory Networks for Seizure Type Classification
Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Petersson, L., Aburn, M. J., & Fookes, C. (2020). Neural Memory Networks for Seizure Type Classification. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 569–575. https://doi.org/10.1109/EMBC44109.2020.9175641
View More -
Attention Networks for Multi-Task Signal Analysis
Ahmedt-Aristizabal, D., Armin, M. A., Denman, S., Fookes, C., & Petersson, L. (2020). Attention Networks for Multi-Task Signal Analysis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 184–187. https://doi.org/10.1109/EMBC44109.2020.9175730
View More -
Memory-Efficient Hierarchical Neural Architecture Search for Image Denoising
Zhang, H., Li, Y., Chen, H., & Shen, C. (2020). Memory-efficient hierarchical neural architecture search for image denoising. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3654–3663. https://doi.org/10.1109/CVPR42600.2020.00371
View More -
Visual Odometry Revisited: What Should Be Learnt?
Zhan, H., Weerasekera, C. S., Bian, J. W., & Reid, I. (2020). Visual Odometry Revisited: What Should Be Learnt? Proceedings - IEEE International Conference on Robotics and Automation, 4203–4210. https://doi.org/10.1109/ICRA40945.2020.9197374
View More -
PolarMask: Single Shot Instance Segmentation with Polar Representation
Xie, E., Sun, P., Song, X., Wang, W., Liu, X., Liang, D., Shen, C., & Luo, P. (2020). PolarMask: Single shot instance segmentation with polar representation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12190–12199. https://doi.org/10.1109/CVPR42600.2020.01221
View More -
SOLO: Segmenting Objects by Locations
Wang X., Kong T., Shen C., Jiang Y., Li L. (2020) SOLO: Segmenting Objects by Locations. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_38
View More -
Optimal Feature Transport for Cross-View Image Geo-Localization
Shi, Y., Yu, X., Liu, L., Zhang, T., & Li, H. (2020). Optimal Feature Transport for Cross-View Image Geo-Localization. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 11990-11997. https://doi.org/10.1609/aaai.v34i07.6875
View More -
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Nguyen, C., Do, T. T., & Carneiro, G. (2020). Uncertainty in model-agnostic meta-learning using variational inference. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 3079–3089. https://doi.org/10.1109/WACV45572.2020.9093536
View More -
Unsupervised Task Design to Meta-Train Medical Image Classifiers
Maicas, G., Nguyen, C., Motlagh, F., Nascimento, J. C., & Carneiro, G. (2020). Unsupervised Task Design to Meta-Train Medical Image Classifiers. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1339–1342. https://doi.org/10.1109/ISBI45749.2020.9098470
View More -
Photoshopping Colonoscopy Video Frames
Liu, Y., Tian, Y., Maicas, G., Cheng Tao Pu, L. Z., Singh, R., Verjans, J. W., & Carneiro, G. (2020). Photoshopping Colonoscopy Video Frames. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1642–1646. https://doi.org/10.1109/ISBI45749.2020.9098406
View More -
Word-level Deep Sign Language Recognition from Video: A New Large-scale Dataset and Methods Comparison
Li, D., Opazo, C. R., Yu, X., & Li, H. (2020). Word-level deep sign language recognition from video: A new large-scale dataset and methods comparison. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1448–1458. https://doi.org/10.1109/WACV45572.2020.9093512
View More -
Semi-supervised Multi-domain Multi-task Training for Metastatic Colon Lymph Node Diagnosis From Abdominal CT
Glaser, S., Maicas, G., Bedrikovetski, S., Sammour, T., & Carneiro, G. (2020). Semi-Supervised Multi-Domain Multi-Task Training for Metastatic Colon Lymph Node Diagnosis from Abdominal CT. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1478–1481. https://doi.org/10.1109/ISBI45749.2020.9098372
View More -
End-to-End Learnable Geometric Vision by Backpropagating PnP Optimization
Chen, B., Parra, Á., Cao, J., Li, N., & Chin, T. J. (2020). End-to-end learnable geometric vision by backpropagating PNP optimization. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8097–8106. https://doi.org/10.1109/CVPR42600.2020.00812
View More -
CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning
Chancan, M., & Milford, M. (2020). CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning. Proceedings - IEEE International Conference on Robotics and Automation, 1697–1704. https://doi.org/10.1109/ICRA40945.2020.9197336
View More -
Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraint
Ch’ng, S. F., Sogi, N., Purkait, P., Chin, T. J., & Fukui, K. (2020). Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraints∗. Proceedings - IEEE International Conference on Robotics and Automation, 9680–9686. https://doi.org/10.1109/ICRA40945.2020.9196902
View More -
Dynamic SLAM: The Need For Speed
Henein, M., Zhang, J., Mahony, R., & Ila, V. (2020). Dynamic SLAM: The Need For Speed. Proceedings - IEEE International Conference on Robotics and Automation, 2123–2129. http://arxiv.org/abs/2002.08584
View More -
LyRN (Lyapunov Reaching Network): A Real-Time Closed Loop approach from Monocular Vision
Zhuang, Z., Yu, X., & Mahony, R. (2020). LyRN (Lyapunov Reaching Network): A Real-Time Closed Loop approach from Monocular Vision. Proceedings - IEEE International Conference on Robotics and Automation, 8331–8337. http://arxiv.org/abs/2005.12072
View More -
UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders
Zhang, J., Fan, D. P., Dai, Y., Anwar, S., Saleh, F. S., Zhang, T., & Barnes, N. (2020). UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8579–8588. https://doi.org/10.1109/CVPR42600.2020.00861
View More -
Random Erasing Data Augmentation
Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). Random Erasing Data Augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 13001–13008.
View More -
Correlating edge, pose with parsing
Zhang, Z., Su, C., Zheng, L., & Xie, X. (2020). Correlating edge, pose with parsing. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8897–8906. https://doi.org/10.1109/CVPR42600.2020.00892
View More -
Deblurring by Realistic Blurring
Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. (2020). Deblurring by Realistic Blurring. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2734–2743. https://doi.org/10.1109/CVPR42600.2020.00281
View More -
Mosaic super-resolution via sequential feature pyramid networks
Shoeiby, M., Armin, M. A., Aliakbarian, S., Anwar, S., & Petersson, L. (2020). Mosaic super-resolution via sequential feature pyramid networks. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 378–387. https://doi.org/10.1109/CVPRW50498.2020.00050
View More -
Transductive zero-shot learning for 3D point cloud classification
Cheraghian, A., Rahman, S., Campbell, D., & Petersson, L. (2020). Transductive zero-shot learning for 3D point cloud classification. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 912–922. https://doi.org/10.1109/WACV45572.2020.9093545
View More -
Learning User Preferences from Corrections on State Lattices
Wilde, N., Kulic, D., & Smith, S. L. (2020). Learning User Preferences from Corrections on State Lattices. Proceedings - IEEE International Conference on Robotics and Automation, 4913–4919. https://doi.org/10.1109/ICRA40945.2020.9197040
View More -
Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching
Shi, Y., Yu, X., Campbell, D., & Li, H. (2020). Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR 2020
View More -
Inferring Temporal Compositions of Actions Using Probabilistic Automata
Cruz, R. S., Cherian, A., Fernando, B., Campbell, D., & Gould, S. (2020). Inferring temporal compositions of actions using probabilistic automata. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 1514–1522. https://doi.org/10.1109/CVPRW50498.2020.00192
View More -
Transferring Cross-domain Knowledge for Video Sign Language Recognition
Li, D., Yu, X., Xu, C., Petersson, L., & Li, H. (2020). Transferring Cross-domain Knowledge for Video Sign Language Recognition, CVPR 2020
View More -
EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency
Faisal, M., Akhter, I., Ali, M., & Hartley, R. (2020). EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1873–1882. https://doi.org/10.1109/WACV45572.2020.9093589
View More -
Learning to Structure an Image with Few Colors
Hou, Y., Zheng, L., & Gould, S. (2020). Learning to Structure an Image with Few Colors, CVPR 2020
View More -
Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
Zhou, D., Fang, J., Song, X., Liu, L., Yin, J., Dai, Y., Li, H., & Yang, R. (2020). Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1839–1849.
View More -
Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection
Pang, G., Yan, C., Shen, C., van den Hengel, A., & Bai, X. (2020). Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12170–12179. https://doi.org/10.1109/CVPR42600.2020.01219
View More -
DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers
Zhang, C., Cai, Y., Lin, G., & Shen, C. (2020). DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12200–12210. https://doi.org/10.1109/CVPR42600.2020.01222
View More -
Mask Encoding for Single Shot Instance Segmentation
Zhang, R., Tian, Z., Shen, C., You, M., & Yan, Y. (2020). Mask Encoding for Single Shot Instance Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 10223–10232. https://doi.org/10.1109/CVPR42600.2020.01024
View More -
Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume
Johnston, A., & Carneiro, G. (2020). Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4755–4764. https://doi.org/10.1109/CVPR42600.2020.00481
View More -
Context Prior for Scene Segmentation
Yu, C., Wang, J., Gao, C., Yu, G., Shen, C., & Sang, N. (2020). Context prior for scene segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12413–12422. https://doi.org/10.1109/CVPR42600.2020.01243
View More -
Anomaly Detection via Neighbourhood Contrast. Lecture Notes in Computer Science
Chen B., Ting K.M., Chin TJ. (2020) Anomaly Detection via Neighbourhood Contrast. In: Lauw H., Wong RW., Ntoulas A., Lim EP., Ng SK., Pan S. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2020. Lecture Notes in Computer Science, vol 12085. Springer, Cham. https://doi.org/10.1007/978-3-030-47436-2_49
View More -
Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos
Ehsanpour M., Abedin A., Saleh F., Shi J., Reid I., Rezatofighi H. (2020) Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_11
View More -
Architecture search of dynamic cells for semantic video segmentation
Nekrasov, V., Chen, H., Shen, C., & Reid, I. (2020). Architecture search of dynamic cells for semantic video segmentation. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1959–1968. https://doi.org/10.1109/WACV45572.2020.9093531
View More -
Reverie: Remote embodied visual referring expression in real indoor environments
Qi, Y., Wu, Q., Anderson, P., Wang, X., Wang, W. Y., Shen, C., & Van Den Hengel, A. (2020). Reverie: Remote embodied visual referring expression in real indoor environments. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 9979–9988. https://doi.org/10.1109/CVPR42600.2020.01000
View More -
Training quantized neural networks with a full-precision auxiliary module
Zhuang, B., Liu, L., Tan, M., Shen, C., & Reid, I. (2020). Training quantized neural networks with a full-precision auxiliary module. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1485–1494. https://doi.org/10.1109/CVPR42600.2020.00156
View More -
Towards Simulating Semantic Onboard UAV Navigation
Mandel, N., Alvarez, F. V., Milford, M., & Gonzalez, F. (2020, March 1). Towards Simulating Semantic Onboard UAV Navigation. IEEE Aerospace Conference Proceedings. https://doi.org/10.1109/AERO47225.2020.9172771
View More -
Fast postprocessing for difficult discrete energy minimization problems
Akhter, I., Cheong, L. F., & Hartley, R. (2020). Fast postprocessing for difficult discrete energy minimization problems. In Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020 (pp. 3462–3471).
View More -
A Stochastic Conditioning Scheme for Diverse Human Motion Prediction
Aliakbarian, S., Sadat, F., †1, S., Salzmann, M., Petersson, L., & Gould, S. (2020). A Stochastic Conditioning Scheme for Diverse Human Motion Prediction *. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5223–5232).
View More -
Blended convolution and synthesis for efficient discrimination of 3D shapes
Ramasinghe, S., Khan, S., Barnes, N., & Gould, S. (2020). Blended convolution and synthesis for efficient discrimination of 3D shapes. In Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020 (pp. 21–31).
View More -
Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution
Song, X., Dai, Y., Zhou, D., Liu, L., Li, W., Li, H., & Yang, R. (2020). Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
View More -
Geometry to the Rescue : 3D Instance Reconstruction from a Cluttered Scene
Li, L., & Barnes, N. (2020). Geometry to the Rescue : 3D Instance Reconstruction from a Cluttered Scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
View More -
Proposal-free temporal moment localization of a natural-language query in video using guided attention
Rodriguez-Opazo, C., Marrese-Taylor, E., Saleh, F. S., Li, H., & Gould, S. (2020). Proposal-free temporal moment localization of a natural-language query in video using guided attention. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 2453–2462. https://doi.org/10.1109/WACV45572.2020.9093328
View More -
Robust Ego and Object 6-DoF Motion Estimation and Tracking
Zhang, J., Henein, M., Mahony, R., & Viorela, I. (2020). Robust Ego and Object 6-DoF Motion Estimation and Tracking. IROS 2020.
View More -
Cost Volume Pyramid Based Depth Inference for Multi-View Stereo
Yang, J., Mao, W., Alvarez, J. M., & Liu, M. (2020). Cost volume pyramid based depth inference for multi-view stereo. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4876–4885. https://doi.org/10.1109/CVPR42600.2020.00493
View More -
From Depth What Can You See? Depth Completion via Auxiliary Image Reconstruction
Lu, K., Barnes, N., Anwar, S., & Zheng, L. (2020). From depth what can you see? Depth completion via auxiliary image reconstruction. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 11303–11312. https://doi.org/10.1109/CVPR42600.2020.01132
View More -
Learning Landmark Guided Embeddings for Animal Re-identification
Moskvyak, O., Maire, F., Dayoub, F., & Baktashmotlagh, M. (2020). Learning Landmark Guided Embeddings for Animal Re-identification. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision Workshops, WACVW 2020, 12–19. https://doi.org/10.1109/WACVW50321.2020.9096932
View More -
Probabilistic object detection: Definition and evaluation
Hall, D., Dayoub, F., Skinner, J., Zhang, H., Miller, D., Corke, P., Carneiro, G., Angelova, A., & Sunderhauf, N. (2020). Probabilistic object detection: Definition and evaluation. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1020–1029. https://doi.org/10.1109/WACV45572.2020.9093599
View More -
Autonomous UAV Navigation for Active Perception of Targets in Uncertain and Cluttered Environments
Sandino, J., Vanegas, F., Gonzalez, F., & Maire, F. (2020). Autonomous UAV Navigation for active perception of targets in uncertain and cluttered environments. Proceedings of 2020 IEEE Aerospace Conference.
View More -
Attention Driven Fusion for Multi-Modal Emotion Recognition
Priyasad, D., Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020, April 9). Attention Driven Fusion for Multi-Modal Emotion Recognition. 3227–3231. https://doi.org/10.1109/icassp40776.2020.9054441
View More -
DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares
Ben-Shabat Y., Gould S. (2020) DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_2
View More -
On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering
Wang, X., Liu, Y., Shen, C., Ng, C. C., Luo, C., Jin, L., Chan, C. S., van den Hengel, A., & Wang, L. (2020). On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering. Retrieved from http://arxiv.org/abs/2002.10215
View More -
BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation
Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., & Yan, Y. (2020). Blendmask: Top-down meets bottom-up for instance segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8570–8578. https://doi.org/10.1109/CVPR42600.2020.00860
View More -
Fast Image Reconstruction with an Event Camera
Scheerlinck, C., Rebecq, H., Gehrig, D., Barnes, N., Mahony, R. E., & Scaramuzza, D. (2020). Fast Image Reconstruction with an Event Camera. Retrieved from https://github.com/uzh-rpg/rpg
View More -
OpenGAN: Open Set Generative Adversarial Networks
Ditria L., Meyer B.J., Drummond T. (2021) OpenGAN: Open Set Generative Adversarial Networks. In: Ishikawa H., Liu CL., Pajdla T., Shi J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science, vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_29
View More -
Semantic Consistency and Identity Mapping Multi-Component Generative Adversarial Network for Person Re-Identification
Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Semantic Consistency and Identity Mapping Multi-Component Generative Adversarial Network for Person Re-Identification.
View More -
Joint Stereo Video Deblurring, Scene Flow Estimation and Moving Object Segmentation
Pan, L., Dai, Y., Liu, M., Porikli, F., & Pan, Q. (2020). Joint stereo video deblurring, scene flow estimation and moving object segmentation. IEEE Transactions on Image Processing, 29, 1748–1761. https://doi.org/10.1109/TIP.2019.2945867
View More -
V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices
Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., & van den Hengel, A. (2020). V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 12071-12078. https://doi.org/10.1609/aaai.v34i07.6885
View More
-
Model-free Tracker for Multiple Objects Using Joint Appearance and Motion Inference
Liu, C., Yao, R., Rezatofighi, S. H., Reid, I., & Shi, Q. (2020). Model-Free Tracker for Multiple Objects Using Joint Appearance and Motion Inference. IEEE Transactions on Image Processing, 29, 277–288. https://doi.org/10.1109/TIP.2019.2928123
View More -
Architecture Search of Dynamic Cells for Semantic Video Segmentation
Nekrasov, V., Chen, H., Shen, C., & Reid, I. (2020). Architecture Search of Dynamic Cells for Semantic Video Segmentation.
View More -
Template-Based Automatic Search of Compact Semantic Segmentation Architectures
Nekrasov, V., Shen, C., & Reid, I. (2020). Template-Based Automatic Search of Compact Semantic Segmentation Architectures.
View More
Edited Collection
-
Events and Machine Learning
Hebblewhite, A., Hohwy, J., & Drummond, T. (2020). Events and Machine Learning. Topics in Cognitive Science, tops.12520. https://doi.org/10.1111/tops.12520
View More -
Guest Editorial: Special Issue on ACCV 2018
Jawahar, C. V., Li, H., Mori, G., & Schindler, K. (2020). Guest Editorial: Special Issue on ACCV 2018. International Journal of Computer Vision, 128(4), 909.
View More
Submitted
-
Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks
Rahimi, A., Shaban, A., Cheng, C.-A., Hartley, R., & Boots, B. (2020). Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks. http://arxiv.org/abs/2003.06820
View More -
Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization
Rahimi, A., Shaban, A., Ajanthan, T., Hartley, R., & Boots, B. (2020). Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization. http://arxiv.org/abs/2003.08375
View More -
Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point Problem
Liu, L., Campbell, D., Li, H., Zhou, D., Song, X., & Yang, R. (2020). Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point Problem. ArXiv. http://arxiv.org/abs/2003.06752
View More -
Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level Optimization
Jiang, S., Campbell, D., Liu, M., Gould, S., & Hartley, R. (2020). Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level Optimization. ArXiv. http://arxiv.org/abs/2002.11826
View More -
Sub-Instruction Aware Vision-and-Language Navigation
Hong, Y., Rodriguez-Opazo, C., Wu, Q., & Gould, S. (2020). Sub-Instruction Aware Vision-and-Language Navigation. ArXiv. http://arxiv.org/abs/2004.02707
View More -
ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking
Saleh, F., Aliakbarian, S., Salzmann, M., & Gould, S. (2020). ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking. http://arxiv.org/abs/2004.07482
View More -
An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance
van Goor, P., Mahony, R., Hamel, T., & Trumpf, J. (2020). An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance. ArXiv. http://arxiv.org/abs/2005.14347
View More -
A Minimum Energy Filter for Localisation of an Unmanned Aerial Vehicle
Henderson, J., Zamani, M., Mahony, R., & Trumpf, J. (2020). A Minimum Energy Filter for Localisation of an Unmanned Aerial Vehicle. http://arxiv.org/abs/2009.04630
View More -
Accuracy vs. Complexity: A Trade-off in Visual Question Answering Models
Farazi, M. R., Khan, S. H., & Barnes, N. (2020). Accuracy vs. Complexity: A Trade-off in Visual Question Answering Models. ArXiv. http://arxiv.org/abs/2001.07059
View More -
Bidirectional Self-Normalizing Neural Networks
Lu, Y., Gould, S., & Ajanthan, T. (2020). Bidirectional Self-Normalizing Neural Networks. http://arxiv.org/abs/2006.12169
View More -
Calibration of Neural Networks using Splines
Gupta, K., Rahimi, A., Ajanthan, T., Mensink, T., Sminchisescu, C., & Hartley, R. (2020). Calibration of Neural Networks using Splines. http://arxiv.org/abs/2006.12800
View More -
Reducing the Sim-to-Real Gap for Event Cameras
Stoffregen, T., Scheerlinck, C., Scaramuzza, D., Drummond, T., Barnes, N., Kleeman, L., & Mahony, R. (2020). Reducing the Sim-to-Real Gap for Event Cameras. http://arxiv.org/abs/2003.09078
View More -
Hierarchical Neural Architecture Search for Deep Stereo Matching
Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Drummond, T., Li, H., & Ge, Z. (2020). Hierarchical Neural Architecture Search for Deep Stereo Matching. http://arxiv.org/abs/2010.13501
View More -
Bridge the Domain Gap Between Ultra-wide-field and Traditional Fundus Images via Adversarial Domain Adaptation
Ju, L., Wang, X., Zhou, Q., Zhu, H., Harandi, M., Bonnington, P., Drummond, T., & Ge, Z. (2020). Bridge the Domain Gap Between Ultra-wide-field and Traditional Fundus Images via Adversarial Domain Adaptation. ArXiv. http://arxiv.org/abs/2003.10042
View More -
Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular camera for holistic trajectory planning
Loukkal, A., Grandvalet, Y., Drummond, T., & Li, Y. (2020). Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular camera for holistic trajectory planning. http://arxiv.org/abs/2008.04047
View More -
Automatic Pruning for Quantized Neural Networks
Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Automatic Pruning for Quantized Neural Networks. Retrieved from http://arxiv.org/abs/2002.00523
View More -
Residual Likelihood Forests
Zuo, Y., & Drummond, T. (2020). Residual Likelihood Forests. http://arxiv.org/abs/2011.02086
View More -
A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews
Marrese-Taylor, E., Rodriguez-Opazo, C., Balazs, J. A., Gould, S., & Matsuo, Y. (2020). A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews. ACL 2020
View More -
DPDist : Comparing Point Clouds Using Deep Point Cloud Distance
Urbach, D., Ben-Shabat, Y., & Lindenbaum, M. (2020). DPDist : Comparing Point Clouds Using Deep Point Cloud Distance.
View More -
Equivariant Filter Design for Kinematic Systems on Lie Groups
Mahony, R., & Trumpf, J. (2020). Equivariant Filter Design for Kinematic Systems on Lie Groups. http://arxiv.org/abs/2004.00828
View More -
Equivariant Systems Theory and Observer Design
Mahony, R., Hamel, T., & Trumpf, J. (2020). Equivariant Systems Theory and Observer Design. http://arxiv.org/abs/2006.08276
View More -
Few-shot Action Recognition with Permutation-invariant Attention
Zhang, H., Zhang, L., Qi, X., Li, H., Torr, P. H. S., & Koniusz, P. (2020). Few-shot Action Recognition with Permutation-invariant Attention. 525–542. http://arxiv.org/abs/2001.03905
View More -
Improved Gradient based Adversarial Attacks for Quantized Networks
Gupta, K., & Ajanthan, T. (2020). Improved Gradient based Adversarial Attacks for Quantized Networks. ArXiv. http://arxiv.org/abs/2003.13511
View More -
Post-hoc Calibration of Neural Networks
Rahimi, A., Gupta, K., Ajanthan, T., Mensink, T., Sminchisescu, C., & Hartley, R. (2020). Post-hoc Calibration of Neural Networks. http://arxiv.org/abs/2006.12807
View More -
Localising In Complex Scenes Using Balanced Adversarial Adaptation
Avraham, G., Zuo, Y., & Drummond, T. (2020). Localising In Complex Scenes Using Balanced Adversarial Adaptation. http://arxiv.org/abs/2011.04122
View More -
Joint Estimation of Expertise and Reward Preferences From Human Demonstrations
Carreno-Medrano, P., Smith, S. L., & Kulic, D. (2020). Joint Estimation of Expertise and Reward Preferences From Human Demonstrations. http://arxiv.org/abs/2011.04118
View More -
Conditional Convolutions for Instance Segmentation
Tian, Z., Shen, C., & Chen, H. (2020). Conditional Convolutions for Instance Segmentation. http://arxiv.org/abs/2003.05664
View More -
MOT20: A benchmark for multi object tracking in crowded scenes
Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixé, L. (2020). MOT20: A benchmark for multi object tracking in crowded scenes. ArXiv. http://arxiv.org/abs/2003.09003
View More -
Topological Sweep for Multi-Target Detection of Geostationary Space Objects
Liu, D., Chen, B., Chin, T.-J., & Rutten, M. (2020). Topological Sweep for Multi-Target Detection of Geostationary Space Objects. http://arxiv.org/abs/2003.09583
View More -
Topological Sweep for Multi-Target Detection of Geostationary Space Objects
Liu, D., Chen, B., Chin, T.-J., & Rutten, M. (2020). Topological Sweep for Multi-Target Detection of Geostationary Space Objects. http://arxiv.org/abs/2003.09583
View More -
SOLOv2: Dynamic, Faster and Stronger
Wang, X., Zhang, R., Kong, T., Li, L., & Shen, C. (2020). SOLOv2: Dynamic, Faster and Stronger. http://arxiv.org/abs/2003.10152
View More -
BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation
Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., & Sang, N. (2020). BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation. http://arxiv.org/abs/2004.02147
View More -
Role-Wise Data Augmentation for Knowledge Distillation
Fu, J., Geng, X., Duan, Z., Zhuang, B., Yuan, X., Trischler, A., Lin, J., Pal, C., & Dong, H. (2020). Role-Wise Data Augmentation for Knowledge Distillation. https://github.com/bigaidream-projects/role-kd
View More -
Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision
Teney, D., Abbasnedjad, E., & Hengel, A. van den. (2020). Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision. http://arxiv.org/abs/2004.09034
View More -
Structured Multimodal Attentions for TextVQA
Gao, C., Zhu, Q., Wang, P., Li, H., Liu, Y., Hengel, A. van den, & Wu, Q. (2020). Structured Multimodal Attentions for TextVQA. http://arxiv.org/abs/2006.00753
View More -
Monotone Boolean Functions, Feasibility/Infeasibility, LP-type problems and MaxCon
Suter, D., Tennakoon, R., Zhang, E., Chin, T.-J., & Bab-Hadiashar, A. (2020). Monotone Boolean Functions, Feasibility/Infeasibility, LP-type problems and MaxCon. http://arxiv.org/abs/2005.05490
View More -
Scene Text Image Super-Resolution in the Wild
Wang, W., Xie, E., Liu, X., Wang, W., Liang, D., Shen, C., & Bai, X. (2020). Scene Text Image Super-Resolution in the Wild. http://arxiv.org/abs/2005.03341
View More -
Scope Head for Accurate L ocalization in Object Detection
Zhan, G., Xu, D., Lu, G., Wu, W., Shen, C., & Ouyang, W. (2020).Scope Head for Accurate L ocalization in Object Detection. http://arxiv.org/abs/2005.04854
View More -
Visual Question Answering with Prior Class Semantics
Shevchenko, V., Teney, D., Dick, A., & Hengel, A. van den. (2020). Visual Question Answering with Prior Class Semantics. Retrieved from http://arxiv.org/abs/2005.01239
View More -
On the Value of Out-of-Distribution Testing: An Example of Goodhart’s Law
Teney, D., Kafle, K., Shrestha, R., Abbasnejad, E., Kanan, C., & Hengel, A. van den. (2020). On the Value of Out-of-Distribution Testing: An Example of Goodhart’s Law. Retrieved from http://arxiv.org/abs/2005.09241
View More -
Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue
Bian, J.-W., Zhan, H., Wang, N., Chin, T.-J., Shen, C., & Reid, I. (2020). Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue. Retrieved from http://arxiv.org/abs/2006.02708
View More -
Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification
Hermoza, R., Maicas, G., Nascimento, J. C., & Carneiro, G. (2020). Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification. Retrieved from http://arxiv.org/abs/2005.10550
View More -
Deep Learning for Anomaly Detection: A Review
Pang, G., Shen, C., Cao, L., & Hengel, A. van den. (2020). Deep Learning for Anomaly Detection: A Review. http://arxiv.org/abs/2007.02500
View More -
Few-Shot Microscopy Image Cell Segmentation
Dawoud, Y., Hornauer, J., Carneiro, G., & Belagiannis, V. (2020). Few-Shot Microscopy Image Cell Segmentation. Retrieved from http://arxiv.org/abs/2007.01671
View More -
Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks.
Liu, Y., Liu, L., Wang, P., Zhang, P., & Lei, Y. (2020). Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks. Retrieved from http://arxiv.org/abs/2007.03207
View More -
Attend And Discriminate: Beyond the State-of-the-Art for Human Activity Recognition using Wearable Sensors
Abedin, A., Ehsanpour, M., Shi, Q., Rezatofighi, H., & Ranasinghe, D. C. (2020). Attend And Discriminate: Beyond the State-of-the-Art for Human Activity Recognition using Wearable Sensors. Retrieved from http://arxiv.org/abs/2007.07172
View More -
AQD: Towards Accurate Quantized Object Detection
Liu, J., Zhuang, B., Chen, P., Tan, M., & Shen, C. (2020). AQD: Towards Accurate Quantized Object Detection. Retrieved from http://arxiv.org/abs/2007.06919
View More -
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning
Liu, L., Lu, H., Zou, H., Xiong, H., Cao, Z., & Shen, C. (2020). Weighing Counts: Sequential Crowd Counting by Reinforcement Learning. http://arxiv.org/abs/2007.08260
View More -
Quantum Robust Fitting
Chin, T.-J., Suter, D., Chng, S.-F., & Quach, J. (2020). Quantum Robust Fitting. Retrieved from http://arxiv.org/abs/2006.06986
View More -
Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection
Zhang, J., Xie, Y., Liao, Z., Pang, G., Verjans, J., Li, W., Sun, Z., He, J., Shen, C. & Xia, Y. (2020). Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection. Retrieved from http://arxiv.org/abs/2003.12338
View More -
Soft Expert Reward Learning for Vision-and-Language Navigation
Wang, H., Wu, Q., & Shen, C. (2020). Soft Expert Reward Learning for Vision-and-Language Navigation. Retrieved from http://arxiv.org/abs/2007.10835
View More -
Object-and-Action Aware Model for Visual Language Navigation
Qi, Y., Pan, Z., Zhang, S., Hengel, A. van den, & Wu, Q. (2020). Object-and-Action Aware Model for Visual Language Navigation. http://arxiv.org/abs/2007.14626
View More -
AE TextSpotter: Learning Visual and Linguistic Representation for Ambiguous Text Spotting
Wang, W., Liu, X., Ji, X., Xie, E., Liang, D., Yang, Z., Lu, T., Shen, C., & Luo, P. (2020). AE TextSpotter: Learning Visual and Linguistic Representation for Ambiguous Text Spotting. Retrieved from http://arxiv.org/abs/2008.00714
View More -
How Trustworthy are the Existing Performance Evaluations for Basic Vision Tasks?
Rezatofighi, H., Nguyen, T. T. D., Vo, B.-N., Vo, B.-T., Savarese, S., & Reid, I. (2020). How Trustworthy are the Existing Performance Evaluations for Basic Vision Tasks? Retrieved from http://arxiv.org/abs/2008.03533
View More -
An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance
van Goor, P., Mahony, R., Hamel, T., & Trumpf, J. (2020). An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance. ArXiv. http://arxiv.org/abs/2005.14347
View More -
Single Image Optical Flow Estimation with an Event Camera
Pan, L., Liu, M., & Hartley, R. (2020). Single Image Optical Flow Estimation with an Event Camera, CVPR 2020. http://arxiv.org/abs/2004.00347
View More -
Rethinking Class Relations: Absolute-relative Few-shot Learning
Zhang, H., Torr, P. H. S., Li, H., Jian, S., & Koniusz, P. (2020). Rethinking Class Relations: Absolute-relative Few-shot Learning, 1–10.
View More -
The IKEA ASM Dataset: Understanding People Assembling Furniture through Actions, Objects and Pose
Ben-Shabat, Y., Yu, X., Saleh, F. S., Campbell, D., Rodriguez-Opazo, C., Li, H., & Gould, S. (2020). The IKEA ASM Dataset: Understanding People Assembling Furniture through Actions, Objects and Pose.
View More -
Understanding the Effects of Data Parallelism and Sparsity on Neural Network Training
Lee, N., Ajanthan, T., Torr, P. H. S., & Jaggi, M. (2020). Understanding the Effects of Data Parallelism and Sparsity on Neural Network Training.
View More -
VDO-SLAM: A Visual Dynamic Object-aware SLAM System
Zhang, J., Henein, M., Mahony, R., & Ila, V. (2020). VDO-SLAM: A Visual Dynamic Object-aware SLAM System.
View More -
A Signal Propagation Perspective for Pruning Neural Networks at initialization
Lee, N., Ajanthan, T., Gould, S., & Torr, P. H. S. (2019). A Signal Propagation Perspective for Pruning Neural Networks at Initialization. ArXiv. http://arxiv.org/abs/1906.06307
View More -
Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision
Rosenberger, P., Cosgun, A., Newbury, R., Kwan, J., Ortenzi, V., Corke, P., & Grafinger, M. (2020). Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision. http://arxiv.org/abs/2006.01797
View More -
Control of the Final-Phase of Closed-Loop Visual Grasping using Image-Based Visual Servoing
Haviland, J., Dayoub, F., & Corke, P. (2020). Control of the Final-Phase of Closed-Loop Visual Grasping using Image-Based Visual Servoing. http://arxiv.org/abs/2001.05650
View More -
Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency Detection
Zhang, J., Xie, J., & Barnes, N. (2020). Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency Detection. http://arxiv.org/abs/2007.12211
View More -
Learning Arbitrary-Goal Fabric Folding with One Hour of Real Robot Experience
Lee, R., Ward, D., Cosgun, A., Dasagi, V., Corke, P., & Leitner, J. (2020). Learning Arbitrary-Goal Fabric Folding with One Hour of Real Robot Experience. http://arxiv.org/abs/2010.03209
View More -
Understanding the Importance of Heart Sound Segmentation for Heart Anomaly Detection
Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). Understanding the Importance of Heart Sound Segmentation for Heart Anomaly Detection. Retrieved from http://arxiv.org/abs/2005.10480
View More -
VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change
Zaffar, M., Ehsan, S., Milford, M., Flynn, D., & McDonald-Maier, K. (2020). VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change. Retrieved from http://arxiv.org/abs/2005.08135
View More -
Online Inverse Optimal Control for Control-Constrained Discrete-Time Systems on Finite and Infinite Horizons
Molloy, T. L., Ford, J. J., & Perez, T. (2020). Online Inverse Optimal Control for Control-Constrained Discrete-Time Systems on Finite and Infinite Horizons. Proceedings of the IEEE Conference on Decision and Control, 2018-December, 1663–1668. Retrieved from http://arxiv.org/abs/2005.06153
View More -
Active Preference Learning using Maximum Regret
Wilde, N., Kulic, D., & Smith, S. L. (2020). Active Preference Learning using Maximum Regret. http://arxiv.org/abs/2005.04067
View More -
Supportive Actions for Manipulation in Human-Robot Coworker Teams
Bansal, S., Newbury, R., Chan, W., Cosgun, A., Allen, A., Kulić, D., Drummond, D., & Isbell, C. (2020). Supportive Actions for Manipulation in Human-Robot Coworker Teams. Retrieved from http://arxiv.org/abs/2005.00769
View More -
End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification
Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification. Retrieved from http://arxiv.org/abs/2005.03222
View More -
Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional Emotion Recognition
Nguyen, D., Nguyen, D. T., Zeng, R., Nguyen, T. T., Tran, S. N., Nguyen, T., Sridharan, S., & Fookes, C. (2020). Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional Emotion Recognition.
View More -
Class Anchor Clustering: a Distance-based Loss for Training Open Set Classifiers
Miller, D., Sünderhauf, N., Milford, M., & Dayoub, F. (2020). Class Anchor Clustering: a Distance-based Loss for Training Open Set Classifiers. Retrieved from http://arxiv.org/abs/2004.02434
View More -
Learning to Place Objects onto Flat Surfaces in Human-Preferred Orientations
Newbury, R., He, K., Cosgun, A., & Drummond, T. (2020). Learning to Place Objects onto Flat Surfaces in Human-Preferred Orientations. Retrieved from http://arxiv.org/abs/2004.00249
View More -
Joint Deep Cross-Domain Transfer Learning for Emotion Recognition
Nguyen, D., Sridharan, S., Nguyen, D. T., Denman, S., Tran, S. N., Zeng, R., & Fookes, C. (2020). Joint Deep Cross-Domain Transfer Learning for Emotion Recognition. (2018). Retrieved from http://arxiv.org/abs/2003.11136
View More -
How to Train Your Event Camera Neural Network
Stoffregen, T., Scheerlinck, C., Scaramuzza, D., Drummond, T., Barnes, N., Kleeman, L., & Mahony, R. (2020). How to Train Your Event Camera Neural Network. Retrieved from http://arxiv.org/abs/2003.09078
View More -
Generative Low-bitwidth Data Free Quantization
Xu, S., Li, H., Zhuang, B., Liu, J., Cao, J., Liang, C., & Tan, M. (2020). Generative Low-bitwidth Data Free Quantization. Retrieved from http://arxiv.org/abs/2003.03603
View More -
Efficient Semantic Video Segmentation with Per-frame Inference
Liu, Y., Shen, C., Yu, C., & Wang, J. (2020). Efficient Semantic Video Segmentation with Per-frame Inference. Retrieved from https://tinyurl.com/segment-video
View More -
PAC-Bayesian Meta-learning with Implicit Prior
Nguyen, C., Do, T.-T., & Carneiro, G. (2020). PAC-Bayesian Meta-learning with Implicit Prior. Retrieved from http://arxiv.org/abs/2003.02455
View More -
ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
Liu, Y., Chen, H., Shen, C., He, T., Jin, L., & Wang, L. (2020). ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network. Retrieved from http://arxiv.org/abs/2002.10200
View More -
Globally Optimal Contrast Maximisation for Event-based Motion Estimation
Liu, D., Parra, Á., & Chin, T.-J. (2020). Globally Optimal Contrast Maximisation for Event-based Motion Estimation. Retrieved from http://arxiv.org/abs/2002.10686
View More -
3D Gated Recurrent Fusion for Semantic Scene Completion
Liu, Y., Li, J., Yan, Q., Yuan, X., Zhao, C., Reid, I., & Cadena, C. (2020). 3D Gated Recurrent Fusion for Semantic Scene Completion. Retrieved from http://arxiv.org/abs/2002.07269
View More -
Hyperspectral Classification Based on 3D Asymmetric Inception Network with Data Fusion Transfer Learning
Zhang, H., Liu, Y., Fang, B., Li, Y., Liu, L., & Reid, I. (2020). Hyperspectral Classification Based on 3D Asymmetric Inception Network with Data Fusion Transfer Learning. Retrieved from https://github.com/UniLauX/AINet
View More -
DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data
Yin, W., Wang, X., Shen, C., Liu, Y., Tian, Z., Xu, S., Sun, C., & Renyin, D. (2020). DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data. Retrieved from http://arxiv.org/abs/2002.00569
View More -
Learn to Predict Sets Using Feed-Forward Neural Networks
Rezatofighi, H., Kaskman, R., Motlagh, F. T., Shi, Q., Milan, A., Cremers, D., Leal-Taixé, L., & Reid, I. (2020). Learn to Predict Sets Using Feed-Forward Neural Networks. Retrieved from http://arxiv.org/abs/2001.11845
View More -
Separating Content from Style Using Adversarial Learning for Recognizing Text in the Wild
Luo, C., Lin, Q., Liu, Y., Jin, L., & Shen, C. (2020). Separating Content from Style Using Adversarial Learning for Recognizing Text in the Wild. Retrieved from http://arxiv.org/abs/2001.04189
View More -
Memorizing Comprehensively to Learn Adaptively: Unsupervised Cross-Domain Person Re-ID with Multi-level Memory
Zhang, X., Gong, D., Cao, J., & Shen, C. (2020). Memorizing Comprehensively to Learn Adaptively: Unsupervised Cross-Domain Person Re-ID with Multi-level Memory. Retrieved from http://arxiv.org/abs/2001.04123
View More -
From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting
Xiong, H., Lu, H., Liu, C., Liu, L., Shen, C., & Cao, Z. (2020). From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting. Retrieved from https://tinyurl.com/SS-DCNet.
View More -
Learning and Memorizing Representative Prototypes for 3D Point Cloud Semantic and Instance Segmentation
He, T., Gong, D., Tian, Z., & Shen, C. (2020). Learning and Memorizing Representative Prototypes for 3D Point Cloud Semantic and Instance Segmentation.
View More -
Learning to Zoom-in via Learning to Zoom-out: Real-world Super-resolution by Generating and Adapting Degradation
Gong, D., Sun, W., Shi, Q., Van Den Hengel, A., & Zhang, Y. (2020). Learning to Zoom-in via Learning to Zoom-out: Real-world Super-resolution by Generating and Adapting Degradation.https://arxiv.org/pdf/2001.02381.pdf
View More -
Discrimination-aware Network Pruning for Deep Model Compression
Liu, J., Zhuang, B., Zhuang, Z., Guo, Y., Huang, J., Zhu, J., & Tan, M. (2020). Discrimination-aware Network Pruning for Deep Model Compression. Retrieved from https://github.com/SCUT-AILab/DCP.
View More -
Switchable Precision Neural Networks
Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Switchable Precision Neural Networks. Retrieved from http://arxiv.org/abs/2002.02815
View More -
Automatic Pruning for Quantized Neural Networks
Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Automatic Pruning for Quantized Neural Networks. Retrieved from http://arxiv.org/abs/2002.00523
View More -
String stable integral control of vehicle platoons with disturbances
Silva, G. F., Donaire, A., McFadyen, A., & Ford, J. (2020). String stable integral control of vehicle platoons with disturbances. Retrieved from http://arxiv.org/abs/2002.09666
View More -
A Multiple Decoder CNN for Inverse Consistent 3D Image Registration
Nazib, A., Fookes, C., Salvado, O., & Perrin, D. (2020). A Multiple Decoder CNN for Inverse Consistent 3D Image Registration. Retrieved from http://arxiv.org/abs/2002.06468
View More -
Enhancing Feature Invariance with Learned Image Transformations for Image Retrieval
Tursun, O., Denman, S., Sridharan, S., & Fookes, C. (2020). Enhancing Feature Invariance with Learned Image Transformations for Image Retrieval. Retrieved from http://arxiv.org/abs/2002.01642
View More -
EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility in robotic manipulation
Morrison, D., Corke, P., & Leitner, J. (2020). EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility in robotic manipulation. Retrieved from http://arxiv.org/abs/2003.01314
View More -
Maximising Manipulability During Resolved-Rate Motion Control
Haviland, J., & Corke, P. (2020). Maximising Manipulability During Resolved-Rate Motion Control. Retrieved from http://arxiv.org/abs/2002.11901
View More -
Robot Navigation in Unseen Spaces using an Abstract Map
Talbot, B., Dayoub, F., Corke, P., & Wyeth, G. (2020). Robot Navigation in Unseen Spaces using an Abstract Map. Retrieved from http://arxiv.org/abs/2001.11684
View More -
Multiplicative Controller Fusion: A Hybrid Navigation Strategy For Deployment in Unknown Environments
Rana, K., Dasagi, V., Talbot, B., Milford, M., & Sünderhauf, N. (2020). Multiplicative Controller Fusion: A Hybrid Navigation Strategy For Deployment in Unknown Environments. Retrieved from http://arxiv.org/abs/2003.05117
View More -
MVP: Unified Motion and Visual Self-Supervised Learning for Large-Scale Robotic Navigation
Chancán, M., & Milford, M. (2020). MVP: Unified Motion and Visual Self-Supervised Learning for Large-Scale Robotic Navigation. Retrieved from http://arxiv.org/abs/2003.00667
View More -
Hierarchical Multi-Process Fusion for Visual Place Recognition
Hausler, S., & Milford, M. (2020). Hierarchical Multi-Process Fusion for Visual Place Recognition. Retrieved from http://arxiv.org/abs/2002.03895
View More -
Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations
Garg, S., & Milford, M. (2020). Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations. Retrieved from http://arxiv.org/abs/2001.08434
View More -
Close-Proximity Underwater Terrain Mapping Using Learning-based Coarse Range Estimation
Arain, B., Dayoub, F., Rigby, P., & Dunbabin, M. (2020). Close-Proximity Underwater Terrain Mapping Using Learning-based Coarse Range Estimation. Retrieved from http://arxiv.org/abs/2001.00330
View More