2020 Publications


Lecture Notes

  • Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps

    Tong, J., Mahapatra, D., Bonnington, P., Drummond, T., & Ge, Z. (2020). Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12444 LNCS, 41–51. https://doi.org/10.1007/978-3-030-60548-3_5

    View More
  • User Expectations of Robots in Public Spaces: A Co-design Methodology

    Tian, L., Carreno-Medrano, P., Sumartojo, S., Mintrom, M., Coronado, E., Venture, G., & Kulić, D. (2020). User Expectations of Robots in Public Spaces: A Co-design Methodology (pp. 259–270). Springer, Cham. https://doi.org/10.1007/978-3-030-62056-1_22

    View More
  • Self-supervised depth estimation to regularise semantic segmentation in knee arthroscopy

    Liu, F., Jonmohamadi, Y., Maicas, G., Pandey, A. K., & Carneiro, G. (2020). Self-supervised depth estimation to regularise semantic segmentation in knee arthroscopy. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12261 LNCS, 594–603. https://doi.org/10.1007/978-3-030-59710-8_58

    View More
  • Pairwise Relation Learning for Semi-supervised Gland Segmentation

    Xie, Y., Zhang, J., Liao, Z., Verjans, J., Shen, C., & Xia, Y. (2020). Pairwise Relation Learning for Semi-supervised Gland Segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12265 LNCS, 417–427. https://doi.org/10.1007/978-3-030-59722-1_40

    View More

Book Section

  • A Software System for Human-Robot Interaction To Collect Research Data: A HTML/Javascript Service on the Pepper Robot

    Suddrey, G., & Robinson, N. (2020). A Software System for Human-Robot Interaction To Collect Research Data. Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 459–461. https://doi.org/10.1145/3371382.3378287

    View More

Scientific Publications

  • Fracture-related infection: current methods for prevention and treatment

    Foster, A. L., Moriarty, T. F., Trampuz, A., Jaiprakash, A., Burch, M. A., Crawford, R., Paterson, D. L., Metsemakers, W-J., Schuetz, M., & Richards, R. G. (2020). Fracture-related infection: current methods for prevention and treatment. Expert Review of Anti-Infective Therapy, 18(4), 307–321. https://doi.org/10.1080/14787210.2020.1729740

    View More
  • On the informativeness of measurements in Shiryaev’s Bayesian quickest change detectio

    Ford, J. J., James, J., & Molloy, T. L. (2020). On the informativeness of measurements in Shiryaev’s Bayesian quickest change detection. Automatica, 111, 108645. https://doi.org/10.1016/j.automatica.2019.108645

    View More
  • Event-based visual place recognition with ensembles of temporal windows

    Fischer, T., & Milford, M. (2020). Event-based visual place recognition with ensembles of temporal windows. IEEE Robotics and Automation Letters, 5(4), 6924–6931. https://doi.org/10.1109/LRA.2020.3025505

    View More
  • Preliminary study of the Intel RealSenseTM D415 camera for monitoring respiratory like motion of an irregular surface

    Fielding, A. L., Pandey, A. K., Jonmohamadi, Y., Via, R., Weber, D. C., Lomax, A. J., & Fattori, G. (2020). Preliminary study of the Intel RealSenseTM D415 camera for monitoring respiratory like motion of an irregular surface. IEEE Sensors Journal, 1–1. https://doi.org/10.1109/jsen.2020.2993264

    View More
  • Temporarily-Aware Context Modeling Using Generative Adversarial Networks for Speech Activity Detection

    Fernando, T., Sridharan, S., McLaren, M., Priyasad, D., Denman, S., & Fookes, C. (2020). Temporarily-Aware Context Modeling Using Generative Adversarial Networks for Speech Activity Detection. IEEE/ACM Transactions on Audio Speech and Language Processing, 28, 1159–1169. https://doi.org/10.1109/TASLP.2020.2982297

    View More
  • Detection of Fake and Fraudulent Faces via Neural Memory Networks

    Fernando, T., Fookes, C., Denman, S., & Sridharan, S. (2020). Detection of Fake and Fraudulent Faces via Neural Memory Networks. IEEE Transactions on Information Forensics and Security, 16, 1973–1988. https://doi.org/10.1109/TIFS.2020.3047768

    View More
  • Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion

    Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020). Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion. IEEE Signal Processing Magazine, 38(1), 87–96. https://doi.org/10.1109/MSP.2020.2988287

    View More
  • Why are Generative Adversarial Networks so Fascinating and Annoying?

    Faria, F. A., & Carneiro, G. (2020). Why are Generative Adversarial Networks so Fascinating and Annoying? Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020, 1–8. https://doi.org/10.1109/SIBGRAPI51738.2020.00009

    View More
  • From known to the unknown: Transferring knowledge to answer questions about novel visual and semantic concept

    Farazi, M. R., Khan, S. H., & Barnes, N. (2020). From known to the unknown: Transferring knowledge to answer questions about novel visual and semantic concepts. Image and Vision Computing, 103, 103985. https://doi.org/10.1016/j.imavis.2020.103985

    View More
  • A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation

    Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation. IEEE Journal of Biomedical and Health Informatics, 1–1. https://doi.org/10.1109/jbhi.2020.3027910

    View More
  • Domain Generalization in Biosignal Classification

    Dissanayake, T., Fernando, T., Denman, S., Ghaemmaghami, H., Sridharan, S., & Fookes, C. (2020). Domain Generalization in Biosignal Classification. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2020.3045720

    View More
  • Learning Object Relation Graph and Tentative Policy for Visual Navigation

    Du H., Yu X., Zheng L. (2020) Learning Object Relation Graph and Tentative Policy for Visual Navigation. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_2

    View More
  • Increasing ventilator surge capacity in COVID 19 pandemic: Design, manufacture and in vitro-in vivo testing in anaesthetized healthy pigs of a rapid prototyped mechanical ventilator

    Dhanani, J., Pang, G., Pincus, J., Ahern, B., Goodwin, W., Cowling, N., Whitten, G., Abdul-Aziz, M. H., Martin, S., Corke, P., & Laupland, K. B. (2020). Increasing ventilator surge capacity in COVID 19 pandemic: Design, manufacture and in vitro-in vivo testing in anaesthetized healthy pigs of a rapid prototyped mechanical ventilator. BMC Research Notes, 13(1), 1–6. https://doi.org/10.1186/s13104-020-05259-z

    View More
  • Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path

    Deremetz, M., Lenain, R., Laneurit, J., Debain, C., & Peynot, T. (2020). Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path. CCTA 2020 - 4th IEEE Conference on Control Technology and Applications, 372–379. https://doi.org/10.1109/CCTA41146.2020.9206153

    View More
  • Towards Light‐Weight Portrait Matting via Parameter Sharing

    Dai, Y., Lu, H., & Shen, C. (2020). Towards Light‐Weight Portrait Matting via Parameter Sharing. Computer Graphics Forum, cgf.14179. https://doi.org/10.1111/cgf.14179

    View More
  • Shonan Rotation Averaging: Global Optimality by Surfing SO(p)n

    Dellaert F., Rosen D.M., Wu J., Mahony R., Carlone L. (2020) Shonan Rotation Averaging: Global Optimality by Surfing SO(p)n. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_18

    View More
  • The Outcome of Total Knee Arthroplasty With and Without Patellar Resurfacing up to 17 Years: A Report From the Australian Orthopaedic Association National Joint Replacement Registry

    Coory, J. A., Tan, K. G., Whitehouse, S. L., Hatton, A., Graves, S. E., & Crawford, R. W. (2020). The Outcome of Total Knee Arthroplasty With and Without Patellar Resurfacing up to 17 Years: A Report From the Australian Orthopaedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(1), 132–138. https://doi.org/10.1016/j.arth.2019.08.007

    View More
  • Benchmarking Simulated Robotic Manipulation through a Real World Dataset

    Collins, J., McVicar, J., Wedlock, D., Brown, R., Howard, D., & Leitner, J. (2020). Benchmarking Simulated Robotic Manipulation through a Real World Dataset. IEEE Robotics and Automation Letters, 5(1), 250–257. https://doi.org/10.1109/LRA.2019.2953663

    View More
  • A robotic vision system for inspection of soiling at CSP plants

    Coventry, J., Asselineau, C. A., Salahat, E., Raman, M. A., & Mahony, R. (2020). A robotic vision system for inspection of soiling at CSP plants. AIP Conference Proceedings, 2303(1), 100001. https://doi.org/10.1063/5.0029493

    View More
  • Towards a Multimodal System combining Augmented Reality and Electromyography for Robot Trajectory Programming and Execution

    Chan, W. P., Sakr, M., Quintero, C. P., Croft, E., & Van Der Loos, H. F. M. H. (2020). Towards a Multimodal System combining Augmented Reality and Electromyography for Robot Trajectory Programming and Execution. 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, 419–424. https://doi.org/10.1109/RO-MAN47096.2020.9223526

    View More
  • Mortality and Implant Survival With Simultaneous and Staged Bilateral Total Hip Arthroplasty: Experience From the Australian Orthopedic Association National Joint Replacement Registry

    Calabro, L., Yong, M., Whitehouse, S. L., Hatton, A., de Steiger, R., & Crawford, R. W. (2020). Mortality and Implant Survival With Simultaneous and Staged Bilateral Total Hip Arthroplasty: Experience From the Australian Orthopedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(9), 2518–2524. https://doi.org/10.1016/j.arth.2020.04.027

    View More
  • Solving the Blind Perspective-n-Point Problem End-to-End with Robust Differentiable Geometric Optimization

    Campbell D., Liu L., Gould S. (2020) Solving the Blind Perspective-n-Point Problem End-to-End with Robust Differentiable Geometric Optimization. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_15

    View More
  • A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps

    Cagara, D., Dunbabin, M., & Rigby, P. (2020). A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps. Proceedings - IEEE International Conference on Robotics and Automation, 8573–8579. https://doi.org/10.1109/ICRA40945.2020.9196680

    View More
  • Fixation Method for Hip Arthroplasty Stem Following Hip Fracture: A Population-Level Cost-Effectiveness Analysis

    Blythe, R., O’Gorman, P. M., Crawford, R. W., Feenan, R., Hatton, A., Whitehouse, S. L., & Graves, N. (2020). Fixation Method for Hip Arthroplasty Stem Following Hip Fracture: A Population-Level Cost-Effectiveness Analysis. Journal of Arthroplasty, 35(6), 1614–1621. https://doi.org/10.1016/j.arth.2020.02.001

    View More
  • Saliency Improvement in Feature-Poor Surgical Environments Using Local Laplacian of Specified Histograms

    Banach, A., Strydom, M., Jaiprakash, A., Carneiro, G., Brown, C., Crawford, R., & McFadyen, A. (2020). Saliency Improvement in Feature-Poor Surgical Environments Using Local Laplacian of Specified Histograms. IEEE Access, 8, 213378–213388. https://doi.org/10.1109/ACCESS.2020.3040187

    View More
  • Effect of Gate Conductance on Hygroscopic Insulator Organic Field‐Effect Transistors

    Arthur, J. N., Chaudhry, M. U., Woodruff, M. A., Pandey, A. K., & Yambem, S. D. (2020). Effect of Gate Conductance on Hygroscopic Insulator Organic Field‐Effect Transistors. Advanced Electronic Materials, 6(5), 1901079. https://doi.org/10.1002/aelm.201901079

    View More
  • Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy

    Antico, M., Vukovic, D., Camps, S. M., Sasazawa, F., Takeda, Y., Le, A. T. H., Jaiprakash, A., Roberts, J., Crawford, R., Fontanarosa, D., & Carneiro, G. (2020). Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(12), 2543–2552. https://doi.org/10.1109/TUFFC.2020.2965291

    View More
  • 4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study

    Antico, M., Sasazawa, F., Takeda, Y., Jaiprakash, A. T., Wille, M. L., Pandey, A. K., Crawford, R., & Fontanarosa, D. (2020). 4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study. IEEE Access, 8, 146331–146341. https://doi.org/10.1109/ACCESS.2020.3014999

    View More
  • Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy

    Antico, M., Sasazawa, F., Dunnhofer, M., Camps, S. M., Jaiprakash, A. T., Pandey, A. K., Crawford, R., Carneiro, G., & Fontanarosa, D. (2020). Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy. Ultrasound in Medicine and Biology, 46(2), 422–435. https://doi.org/10.1016/j.ultrasmedbio.2019.10.015

    View More
  • Supervised Scene Illumination Control in Stereo Arthroscopes for Robot Assisted Minimally Invasive Surgery

    Ali, S., Jonmohamadi, Y., Takeda, Y., Roberts, J., Crawford, R., & Pandey, A. K. (2020). Supervised Scene Illumination Control in Stereo Arthroscopes for Robot Assisted Minimally Invasive Surgery. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2020.3037301

    View More
  • Neural Memory Networks for Seizure Type Classification

    Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Petersson, L., Aburn, M. J., & Fookes, C. (2020). Neural Memory Networks for Seizure Type Classification. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 569–575. https://doi.org/10.1109/EMBC44109.2020.9175641

    View More
  • Attention Networks for Multi-Task Signal Analysis

    Ahmedt-Aristizabal, D., Armin, M. A., Denman, S., Fookes, C., & Petersson, L. (2020). Attention Networks for Multi-Task Signal Analysis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 184–187. https://doi.org/10.1109/EMBC44109.2020.9175730

    View More
  • MobileFAN: Transferring Deep Hidden Representation for Face Alignment

    Zhao, Y., Liu, Y., Shen, C., Gao, Y., & Xiong, S. (2020). MobileFAN: Transferring deep hidden representation for face alignment. Pattern Recognition, 100, 107114. https://doi.org/10.1016/j.patcog.2019.107114

    View More
  • Deep Multiphase Level Set for Scene Parsing

    Zhang, P., Liu, W., Lei, Y., Wang, H., & Lu, H. (2020). Deep Multiphase Level Set for Scene Parsing. IEEE Transactions on Image Processing, 29, 4556–4567. https://doi.org/10.1109/TIP.2019.2957915

    View More
  • Memory-Efficient Hierarchical Neural Architecture Search for Image Denoising

    Zhang, H., Li, Y., Chen, H., & Shen, C. (2020). Memory-efficient hierarchical neural architecture search for image denoising. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3654–3663. https://doi.org/10.1109/CVPR42600.2020.00371

    View More
  • Visual Odometry Revisited: What Should Be Learnt?

    Zhan, H., Weerasekera, C. S., Bian, J. W., & Reid, I. (2020). Visual Odometry Revisited: What Should Be Learnt? Proceedings - IEEE International Conference on Robotics and Automation, 4203–4210. https://doi.org/10.1109/ICRA40945.2020.9197374

    View More
  • A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification

    Xie, Y., Zhang, J., Xia, Y., & Shen, C. (2020). A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification. IEEE Transactions on Medical Imaging, 39(7), 2482–2493. https://doi.org/10.1109/TMI.2020.2972964

    View More
  • PolarMask: Single Shot Instance Segmentation with Polar Representation

    Xie, E., Sun, P., Song, X., Wang, W., Liu, X., Liang, D., Shen, C., & Luo, P. (2020). PolarMask: Single shot instance segmentation with polar representation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12190–12199. https://doi.org/10.1109/CVPR42600.2020.01221

    View More
  • Improving user specifications for robot behavior through active preference learning: Framework and evaluation

    Wilde, N., Blidaru, A., Smith, S. L., & Kulić, D. (2020). Improving user specifications for robot behavior through active preference learning: Framework and evaluation. The International Journal of Robotics Research, 39(6), 651–667. https://doi.org/10.1177/0278364920910802

    View More
  • SOLO: Segmenting Objects by Locations

    Wang X., Kong T., Shen C., Jiang Y., Li L. (2020) SOLO: Segmenting Objects by Locations. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_38

    View More
  • Optimal Feature Transport for Cross-View Image Geo-Localization

    Shi, Y., Yu, X., Liu, L., Zhang, T., & Li, H. (2020). Optimal Feature Transport for Cross-View Image Geo-Localization. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 11990-11997. https://doi.org/10.1609/aaai.v34i07.6875

    View More
  • Uncertainty in Model-Agnostic Meta-Learning using Variational Inference

    Nguyen, C., Do, T. T., & Carneiro, G. (2020). Uncertainty in model-agnostic meta-learning using variational inference. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 3079–3089. https://doi.org/10.1109/WACV45572.2020.9093536

    View More
  • Unsupervised Task Design to Meta-Train Medical Image Classifiers

    Maicas, G., Nguyen, C., Motlagh, F., Nascimento, J. C., & Carneiro, G. (2020). Unsupervised Task Design to Meta-Train Medical Image Classifiers. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1339–1342. https://doi.org/10.1109/ISBI45749.2020.9098470

    View More
  • Index Network

    Lu, H., Dai, Y., Shen, C., & Xu, S. (2019, August 11). Index network. ArXiv. https://doi.org/10.1109/tpami.2020.3004474

    View More
  • Photoshopping Colonoscopy Video Frames

    Liu, Y., Tian, Y., Maicas, G., Cheng Tao Pu, L. Z., Singh, R., Verjans, J. W., & Carneiro, G. (2020). Photoshopping Colonoscopy Video Frames. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1642–1646. https://doi.org/10.1109/ISBI45749.2020.9098406

    View More
  • A Generalized Framework for Edge-preserving and Structure-preserving Image Smoothing

    Liu, W., Zhang, P., Huang, X., Yang, J., Shen, C., & Reid, I. (2019, July 22). A generalized framework for edge-preserving and structure-preserving image smoothing. ArXiv, Vol. 34, pp. 11620–11628. https://doi.org/10.1609/aaai.v34i07.6830

    View More
  • Word-level Deep Sign Language Recognition from Video: A New Large-scale Dataset and Methods Comparison

    Li, D., Opazo, C. R., Yu, X., & Li, H. (2020). Word-level deep sign language recognition from video: A new large-scale dataset and methods comparison. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1448–1458. https://doi.org/10.1109/WACV45572.2020.9093512

    View More
  • Semi-supervised Multi-domain Multi-task Training for Metastatic Colon Lymph Node Diagnosis From Abdominal CT

    Glaser, S., Maicas, G., Bedrikovetski, S., Sammour, T., & Carneiro, G. (2020). Semi-Supervised Multi-Domain Multi-Task Training for Metastatic Colon Lymph Node Diagnosis from Abdominal CT. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1478–1481. https://doi.org/10.1109/ISBI45749.2020.9098372

    View More
  • End-to-End Learnable Geometric Vision by Backpropagating PnP Optimization

    Chen, B., Parra, Á., Cao, J., Li, N., & Chin, T. J. (2020). End-to-end learnable geometric vision by backpropagating PNP optimization. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8097–8106. https://doi.org/10.1109/CVPR42600.2020.00812

    View More
  • CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning

    Chancan, M., & Milford, M. (2020). CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning. Proceedings - IEEE International Conference on Robotics and Automation, 1697–1704. https://doi.org/10.1109/ICRA40945.2020.9197336

    View More
  • Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraint

    Ch’ng, S. F., Sogi, N., Purkait, P., Chin, T. J., & Fukui, K. (2020). Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraints∗. Proceedings - IEEE International Conference on Robotics and Automation, 9680–9686. https://doi.org/10.1109/ICRA40945.2020.9196902

    View More
  • A Deep Journey into Super-resolution: A survey

    Anwar, S., Khan, S., & Barnes, N. (2020, June 1). A Deep Journey into Super-resolution: A Survey. ACM Computing Surveys, Vol. 53, pp. 1–34. https://doi.org/10.1145/3390462

    View More
  • Densely Residual Laplacian Super-Resolution

    Anwar, S., & Barnes, N. (2019, June 27). Densely Residual Laplacian Super-Resolution. ArXiv. https://doi.org/10.1109/tpami.2020.3021088

    View More
  • Component-based Attention for Large-scale Trademark Retrieval

    Tursun, O., Denman, S., Sivapalan, S., Sridharan, S., Fookes, C., & Mau, S. (2019). Component-based Attention for Large-scale Trademark Retrieval. IEEE Transactions on Information Forensics and Security. https://doi.org/10.1109/TIFS.2019.2959921

    View More
  • Towards Effective Deep Embedding for Zero-Shot Learning

    Zhang, L., Wang, P., Liu, L., Shen, C., Wei, W., Zhang, Y., & Van Den Hengel, A. (2020). Towards Effective Deep Embedding for Zero-Shot Learning. IEEE Transactions on Circuits and Systems for Video Technology, 30(9), 2843–2852. https://doi.org/10.1109/TCSVT.2020.2984666

    View More
  • Simultaneous compression and quantization: A joint approach for efficient unsupervised hashing

    Hoang, T., Do, T. T., Le, H., Le-Tan, D. K., & Cheung, N. M. (2020). Simultaneous compression and quantization: A joint approach for efficient unsupervised hashing. Computer Vision and Image Understanding, 191, 102852. https://doi.org/10.1016/j.cviu.2019.102852

    View More
  • Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks

    Rahimi, A., Shaban, A., Cheng, C.-A., Hartley, R., & Boots, B. (2020). Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks. http://arxiv.org/abs/2003.06820

    View More
  • Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

    Rahimi, A., Shaban, A., Ajanthan, T., Hartley, R., & Boots, B. (2020). Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization. http://arxiv.org/abs/2003.08375

    View More
  • Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point Problem

    Liu, L., Campbell, D., Li, H., Zhou, D., Song, X., & Yang, R. (2020). Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point Problem. ArXiv. http://arxiv.org/abs/2003.06752

    View More
  • Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level Optimization

    Jiang, S., Campbell, D., Liu, M., Gould, S., & Hartley, R. (2020). Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level Optimization. ArXiv. http://arxiv.org/abs/2002.11826

    View More
  • Sub-Instruction Aware Vision-and-Language Navigation

    Hong, Y., Rodriguez-Opazo, C., Wu, Q., & Gould, S. (2020). Sub-Instruction Aware Vision-and-Language Navigation. ArXiv. http://arxiv.org/abs/2004.02707

    View More
  • ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking

    Saleh, F., Aliakbarian, S., Salzmann, M., & Gould, S. (2020). ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking. http://arxiv.org/abs/2004.07482

    View More
  • Dynamic SLAM: The Need For Speed

    Henein, M., Zhang, J., Mahony, R., & Ila, V. (2020). Dynamic SLAM: The Need For Speed. Proceedings - IEEE International Conference on Robotics and Automation, 2123–2129. http://arxiv.org/abs/2002.08584

    View More
  • LyRN (Lyapunov Reaching Network): A Real-Time Closed Loop approach from Monocular Vision

    Zhuang, Z., Yu, X., & Mahony, R. (2020). LyRN (Lyapunov Reaching Network): A Real-Time Closed Loop approach from Monocular Vision. Proceedings - IEEE International Conference on Robotics and Automation, 8331–8337. http://arxiv.org/abs/2005.12072

    View More
  • UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders

    Zhang, J., Fan, D. P., Dai, Y., Anwar, S., Saleh, F. S., Zhang, T., & Barnes, N. (2020). UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8579–8588. https://doi.org/10.1109/CVPR42600.2020.00861

    View More
  • Random Erasing Data Augmentation

    Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). Random Erasing Data Augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 13001–13008.

    View More
  • An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance

    van Goor, P., Mahony, R., Hamel, T., & Trumpf, J. (2020). An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance. ArXiv. http://arxiv.org/abs/2005.14347

    View More
  • A Minimum Energy Filter for Localisation of an Unmanned Aerial Vehicle

    Henderson, J., Zamani, M., Mahony, R., & Trumpf, J. (2020). A Minimum Energy Filter for Localisation of an Unmanned Aerial Vehicle. http://arxiv.org/abs/2009.04630

    View More
  • Accuracy vs. Complexity: A Trade-off in Visual Question Answering Models

    Farazi, M. R., Khan, S. H., & Barnes, N. (2020). Accuracy vs. Complexity: A Trade-off in Visual Question Answering Models. ArXiv. http://arxiv.org/abs/2001.07059

    View More
  • Bidirectional Self-Normalizing Neural Networks

    Lu, Y., Gould, S., & Ajanthan, T. (2020). Bidirectional Self-Normalizing Neural Networks. http://arxiv.org/abs/2006.12169

    View More
  • Calibration of Neural Networks using Splines

    Gupta, K., Rahimi, A., Ajanthan, T., Mensink, T., Sminchisescu, C., & Hartley, R. (2020). Calibration of Neural Networks using Splines. http://arxiv.org/abs/2006.12800

    View More
  • Correlating edge, pose with parsing

    Zhang, Z., Su, C., Zheng, L., & Xie, X. (2020). Correlating edge, pose with parsing. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8897–8906. https://doi.org/10.1109/CVPR42600.2020.00892

    View More
  • Deblurring by Realistic Blurring

    Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. (2020). Deblurring by Realistic Blurring. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2734–2743. https://doi.org/10.1109/CVPR42600.2020.00281

    View More
  • Mosaic super-resolution via sequential feature pyramid networks

    Shoeiby, M., Armin, M. A., Aliakbarian, S., Anwar, S., & Petersson, L. (2020). Mosaic super-resolution via sequential feature pyramid networks. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 378–387. https://doi.org/10.1109/CVPRW50498.2020.00050

    View More
  • Transductive zero-shot learning for 3D point cloud classification

    Cheraghian, A., Rahman, S., Campbell, D., & Petersson, L. (2020). Transductive zero-shot learning for 3D point cloud classification. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 912–922. https://doi.org/10.1109/WACV45572.2020.9093545

    View More
  • Reducing the Sim-to-Real Gap for Event Cameras

    Stoffregen, T., Scheerlinck, C., Scaramuzza, D., Drummond, T., Barnes, N., Kleeman, L., & Mahony, R. (2020). Reducing the Sim-to-Real Gap for Event Cameras. http://arxiv.org/abs/2003.09078

    View More
  • Hierarchical Neural Architecture Search for Deep Stereo Matching

    Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Drummond, T., Li, H., & Ge, Z. (2020). Hierarchical Neural Architecture Search for Deep Stereo Matching. http://arxiv.org/abs/2010.13501

    View More
  • Events, Event Prediction, and Predictive Processing

    Hohwy, J., Hebblewhite, A., & Drummond, T. (2020). Events, Event Prediction, and Predictive Processing. Topics in Cognitive Science, tops.12491. https://doi.org/10.1111/tops.12491

    View More
  • Bridge the Domain Gap Between Ultra-wide-field and Traditional Fundus Images via Adversarial Domain Adaptation

    Ju, L., Wang, X., Zhou, Q., Zhu, H., Harandi, M., Bonnington, P., Drummond, T., & Ge, Z. (2020). Bridge the Domain Gap Between Ultra-wide-field and Traditional Fundus Images via Adversarial Domain Adaptation. ArXiv. http://arxiv.org/abs/2003.10042

    View More
  • Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular camera for holistic trajectory planning

    Loukkal, A., Grandvalet, Y., Drummond, T., & Li, Y. (2020). Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular camera for holistic trajectory planning. http://arxiv.org/abs/2008.04047

    View More
  • Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps

    Tong, J., Mahapatra, D., Bonnington, P., Drummond, T., & Ge, Z. (2020). Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12444 LNCS, 41–51. https://doi.org/10.1007/978-3-030-60548-3_5

    View More
  • Automatic Pruning for Quantized Neural Networks

    Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Automatic Pruning for Quantized Neural Networks. Retrieved from http://arxiv.org/abs/2002.00523

    View More
  • Learning User Preferences from Corrections on State Lattices

    Wilde, N., Kulic, D., & Smith, S. L. (2020). Learning User Preferences from Corrections on State Lattices. Proceedings - IEEE International Conference on Robotics and Automation, 4913–4919. https://doi.org/10.1109/ICRA40945.2020.9197040

    View More
  • Events and Machine Learning

    Hebblewhite, A., Hohwy, J., & Drummond, T. (2020). Events and Machine Learning. Topics in Cognitive Science, tops.12520. https://doi.org/10.1111/tops.12520

    View More
  • Residual Likelihood Forests

    Zuo, Y., & Drummond, T. (2020). Residual Likelihood Forests. http://arxiv.org/abs/2011.02086

    View More
  • A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews

    Marrese-Taylor, E., Rodriguez-Opazo, C., Balazs, J. A., Gould, S., & Matsuo, Y. (2020). A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews. ACL 2020

    View More
  • Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching

    Shi, Y., Yu, X., Campbell, D., & Li, H. (2020). Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR 2020

    View More
  • DGPose: Deep Generative Models for Human Body Analysis

    de Bem, R., Ghosh, A., Ajanthan, T., Miksik, O., Boukhayma, A., Siddharth, N., & Torr, P. (2020). DGPose: Deep Generative Models for Human Body Analysis. International Journal of Computer Vision, 128(5), 1537–1563.

    View More
  • DPDist : Comparing Point Clouds Using Deep Point Cloud Distance

    Urbach, D., Ben-Shabat, Y., & Lindenbaum, M. (2020). DPDist : Comparing Point Clouds Using Deep Point Cloud Distance.

    View More
  • Inferring Temporal Compositions of Actions Using Probabilistic Automata

    Cruz, R. S., Cherian, A., Fernando, B., Campbell, D., & Gould, S. (2020). Inferring temporal compositions of actions using probabilistic automata. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 1514–1522. https://doi.org/10.1109/CVPRW50498.2020.00192

    View More
  • Transferring Cross-domain Knowledge for Video Sign Language Recognition

    Li, D., Yu, X., Xu, C., Petersson, L., & Li, H. (2020). Transferring Cross-domain Knowledge for Video Sign Language Recognition, CVPR 2020

    View More
  • EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency

    Faisal, M., Akhter, I., Ali, M., & Hartley, R. (2020). EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1873–1882. https://doi.org/10.1109/WACV45572.2020.9093589

    View More
  • Learning to Structure an Image with Few Colors

    Hou, Y., Zheng, L., & Gould, S. (2020). Learning to Structure an Image with Few Colors, CVPR 2020

    View More
  • Joint 3D Instance Segmentation and Object Detection for Autonomous Driving

    Zhou, D., Fang, J., Song, X., Liu, L., Yin, J., Dai, Y., Li, H., & Yang, R. (2020). Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1839–1849.

    View More
  • Equivariant Filter Design for Kinematic Systems on Lie Groups

    Mahony, R., & Trumpf, J. (2020). Equivariant Filter Design for Kinematic Systems on Lie Groups. http://arxiv.org/abs/2004.00828

    View More
  • Equivariant Systems Theory and Observer Design

    Mahony, R., Hamel, T., & Trumpf, J. (2020). Equivariant Systems Theory and Observer Design. http://arxiv.org/abs/2006.08276

    View More
  • Few-shot Action Recognition with Permutation-invariant Attention

    Zhang, H., Zhang, L., Qi, X., Li, H., Torr, P. H. S., & Koniusz, P. (2020). Few-shot Action Recognition with Permutation-invariant Attention. 525–542. http://arxiv.org/abs/2001.03905

    View More
  • Improved Gradient based Adversarial Attacks for Quantized Networks

    Gupta, K., & Ajanthan, T. (2020). Improved Gradient based Adversarial Attacks for Quantized Networks. ArXiv. http://arxiv.org/abs/2003.13511

    View More
  • Post-hoc Calibration of Neural Networks

    Rahimi, A., Gupta, K., Ajanthan, T., Mensink, T., Sminchisescu, C., & Hartley, R. (2020). Post-hoc Calibration of Neural Networks. http://arxiv.org/abs/2006.12807

    View More
  • Localising In Complex Scenes Using Balanced Adversarial Adaptation

    Avraham, G., Zuo, Y., & Drummond, T. (2020). Localising In Complex Scenes Using Balanced Adversarial Adaptation. http://arxiv.org/abs/2011.04122

    View More
  • Joint Estimation of Expertise and Reward Preferences From Human Demonstrations

    Carreno-Medrano, P., Smith, S. L., & Kulic, D. (2020). Joint Estimation of Expertise and Reward Preferences From Human Demonstrations. http://arxiv.org/abs/2011.04118

    View More
  • User Expectations of Robots in Public Spaces: A Co-design Methodology

    Tian, L., Carreno-Medrano, P., Sumartojo, S., Mintrom, M., Coronado, E., Venture, G., & Kulić, D. (2020). User Expectations of Robots in Public Spaces: A Co-design Methodology (pp. 259–270). Springer, Cham. https://doi.org/10.1007/978-3-030-62056-1_22

    View More
  • Conditional Convolutions for Instance Segmentation

    Tian, Z., Shen, C., & Chen, H. (2020). Conditional Convolutions for Instance Segmentation. http://arxiv.org/abs/2003.05664

    View More
  • Real-time Image Smoothing via Iterative Least Squares

    Liu, W., Zhang, P., Huang, X., Yang, J., Shen, C., & Reid, I. (2020). Real-time Image Smoothing via Iterative Least Squares. ACM Transactions on Graphics, 39(3), 1–24. https://doi.org/10.1145/3388887

    View More
  • OPMP: An Omni-directional Pyramid Mask Proposal Network for Arbitrary-shape Scene Text Detection

    Zhang, S., Liu, Y., Jin, L., Wei, Z., & Shen, C. (2020). OPMP: An Omni-directional Pyramid Mask Proposal Network for Arbitrary-shape Scene Text Detection. IEEE Transactions on Multimedia, 1–1. https://doi.org/10.1109/TMM.2020.2978630

    View More
  • MOT20: A benchmark for multi object tracking in crowded scenes

    Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixé, L. (2020). MOT20: A benchmark for multi object tracking in crowded scenes. ArXiv. http://arxiv.org/abs/2003.09003

    View More
  • Topological Sweep for Multi-Target Detection of Geostationary Space Objects

    Liu, D., Chen, B., Chin, T.-J., & Rutten, M. (2020). Topological Sweep for Multi-Target Detection of Geostationary Space Objects. http://arxiv.org/abs/2003.09583

    View More
  • Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection

    Pang, G., Yan, C., Shen, C., van den Hengel, A., & Bai, X. (2020). Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12170–12179. https://doi.org/10.1109/CVPR42600.2020.01219

    View More
  • DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers

    Zhang, C., Cai, Y., Lin, G., & Shen, C. (2020). DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12200–12210. https://doi.org/10.1109/CVPR42600.2020.01222

    View More
  • MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking

    Dendorfer, P., Os̆ep, A., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S., & Leal-Taixé, L. (2021). MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking. International Journal of Computer Vision, 129(4), 845–881. https://doi.org/10.1007/s11263-020-01393-0

    View More
  • Topological Sweep for Multi-Target Detection of Geostationary Space Objects

    Liu, D., Chen, B., Chin, T.-J., & Rutten, M. (2020). Topological Sweep for Multi-Target Detection of Geostationary Space Objects. http://arxiv.org/abs/2003.09583

    View More
  • SOLOv2: Dynamic, Faster and Stronger

    Wang, X., Zhang, R., Kong, T., Li, L., & Shen, C. (2020). SOLOv2: Dynamic, Faster and Stronger. http://arxiv.org/abs/2003.10152

    View More
  • Multi-way backpropagation for training compact deep neural networks

    Guo, Y., Chen, J., Du, Q., Van Den Hengel, A., Shi, Q., & Tan, M. (2020). Multi-way backpropagation for training compact deep neural networks. Neural Networks, 126, 250–261. https://doi.org/10.1016/j.neunet.2020.03.001

    View More
  • Mask Encoding for Single Shot Instance Segmentation

    Zhang, R., Tian, Z., Shen, C., You, M., & Yan, Y. (2020). Mask Encoding for Single Shot Instance Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 10223–10232. https://doi.org/10.1109/CVPR42600.2020.01024

    View More
  • Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume

    Johnston, A., & Carneiro, G. (2020). Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4755–4764. https://doi.org/10.1109/CVPR42600.2020.00481

    View More
  • Context Prior for Scene Segmentation

    Yu, C., Wang, J., Gao, C., Yu, G., Shen, C., & Sang, N. (2020). Context prior for scene segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12413–12422. https://doi.org/10.1109/CVPR42600.2020.01243

    View More
  • BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation

    Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., & Sang, N. (2020). BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation. http://arxiv.org/abs/2004.02147

    View More
  • A Dynamic Parameter Enhanced Network for distant supervised relation extraction

    Gou, Y., Lei, Y., Liu, L., Zhang, P., & Peng, X. (2020). A Dynamic Parameter Enhanced Network for distant supervised relation extraction. Knowledge-Based Systems, 197, 105912. https://doi.org/10.1016/j.knosys.2020.105912

    View More
  • Role-Wise Data Augmentation for Knowledge Distillation

    Fu, J., Geng, X., Duan, Z., Zhuang, B., Yuan, X., Trischler, A., Lin, J., Pal, C., & Dong, H. (2020). Role-Wise Data Augmentation for Knowledge Distillation. https://github.com/bigaidream-projects/role-kd

    View More
  • Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision

    Teney, D., Abbasnedjad, E., & Hengel, A. van den. (2020). Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision. http://arxiv.org/abs/2004.09034

    View More
  • Structured Multimodal Attentions for TextVQA

    Gao, C., Zhu, Q., Wang, P., Li, H., Liu, Y., Hengel, A. van den, & Wu, Q. (2020). Structured Multimodal Attentions for TextVQA. http://arxiv.org/abs/2006.00753

    View More
  • Monotone Boolean Functions, Feasibility/Infeasibility, LP-type problems and MaxCon

    Suter, D., Tennakoon, R., Zhang, E., Chin, T.-J., & Bab-Hadiashar, A. (2020). Monotone Boolean Functions, Feasibility/Infeasibility, LP-type problems and MaxCon. http://arxiv.org/abs/2005.05490

    View More
  • Scene Text Image Super-Resolution in the Wild

    Wang, W., Xie, E., Liu, X., Wang, W., Liang, D., Shen, C., & Bai, X. (2020). Scene Text Image Super-Resolution in the Wild. http://arxiv.org/abs/2005.03341

    View More
  • Scope Head for Accurate L ocalization in Object Detection

    Zhan, G., Xu, D., Lu, G., Wu, W., Shen, C., & Ouyang, W. (2020).Scope Head for Accurate L ocalization in Object Detection. http://arxiv.org/abs/2005.04854

    View More
  • Anomaly Detection via Neighbourhood Contrast. Lecture Notes in Computer Science

    Chen B., Ting K.M., Chin TJ. (2020) Anomaly Detection via Neighbourhood Contrast. In: Lauw H., Wong RW., Ntoulas A., Lim EP., Ng SK., Pan S. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2020. Lecture Notes in Computer Science, vol 12085. Springer, Cham. https://doi.org/10.1007/978-3-030-47436-2_49

    View More
  • Visual Question Answering with Prior Class Semantics

    Shevchenko, V., Teney, D., Dick, A., & Hengel, A. van den. (2020). Visual Question Answering with Prior Class Semantics. Retrieved from http://arxiv.org/abs/2005.01239

    View More
  • On the Value of Out-of-Distribution Testing: An Example of Goodhart’s Law

    Teney, D., Kafle, K., Shrestha, R., Abbasnejad, E., Kanan, C., & Hengel, A. van den. (2020). On the Value of Out-of-Distribution Testing: An Example of Goodhart’s Law. Retrieved from http://arxiv.org/abs/2005.09241

    View More
  • Medical Data Inquiry Using a Question Answering Model

    Liao, Z., Liu, L., Wu, Q., Teney, D., Shen, C., van den Hengel, A., & Verjans, J. (2020). Medical Data Inquiry Using a Question Answering Model. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020-April, 1490–1493. https://doi.org/10.1109/ISBI45749.2020.9098531

    View More
  • Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue

    Bian, J.-W., Zhan, H., Wang, N., Chin, T.-J., Shen, C., & Reid, I. (2020). Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue. Retrieved from http://arxiv.org/abs/2006.02708

    View More
  • Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification

    Hermoza, R., Maicas, G., Nascimento, J. C., & Carneiro, G. (2020). Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification. Retrieved from http://arxiv.org/abs/2005.10550

    View More
  • Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos

    Ehsanpour M., Abedin A., Saleh F., Shi J., Reid I., Rezatofighi H. (2020) Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_11

    View More
  • Deep Learning for Anomaly Detection: A Review

    Pang, G., Shen, C., Cao, L., & Hengel, A. van den. (2020). Deep Learning for Anomaly Detection: A Review. http://arxiv.org/abs/2007.02500

    View More
  • Few-Shot Microscopy Image Cell Segmentation

    Dawoud, Y., Hornauer, J., Carneiro, G., & Belagiannis, V. (2020). Few-Shot Microscopy Image Cell Segmentation. Retrieved from http://arxiv.org/abs/2007.01671

    View More
  • Self-supervised depth estimation to regularise semantic segmentation in knee arthroscopy

    Liu, F., Jonmohamadi, Y., Maicas, G., Pandey, A. K., & Carneiro, G. (2020). Self-supervised depth estimation to regularise semantic segmentation in knee arthroscopy. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12261 LNCS, 594–603. https://doi.org/10.1007/978-3-030-59710-8_58

    View More
  • Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks.

    Liu, Y., Liu, L., Wang, P., Zhang, P., & Lei, Y. (2020). Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks. Retrieved from http://arxiv.org/abs/2007.03207

    View More
  • Scripted Video Generation With a Bottom-Up Generative Adversarial Network

    Chen, Q., Wu, Q., Chen, J., Wu, Q., van den Hengel, A., & Tan, M. (2020). Scripted Video Generation With a Bottom-Up Generative Adversarial Network. IEEE Transactions on Image Processing, 29, 7454–7467. https://doi.org/10.1109/TIP.2020.3003227

    View More
  • Socially and Contextually Aware Human Motion and Pose Forecasting

    Adeli, V., Adeli, E., Reid, I., Niebles, J. C., & Rezatofighi, H. (2020). Socially and Contextually Aware Human Motion and Pose Forecasting. IEEE Robotics and Automation Letters, 5(4), 6033–6040. https://doi.org/10.1109/LRA.2020.3010742

    View More
  • Attend And Discriminate: Beyond the State-of-the-Art for Human Activity Recognition using Wearable Sensors

    Abedin, A., Ehsanpour, M., Shi, Q., Rezatofighi, H., & Ranasinghe, D. C. (2020). Attend And Discriminate: Beyond the State-of-the-Art for Human Activity Recognition using Wearable Sensors. Retrieved from http://arxiv.org/abs/2007.07172

    View More
  • Architecture search of dynamic cells for semantic video segmentation

    Nekrasov, V., Chen, H., Shen, C., & Reid, I. (2020). Architecture search of dynamic cells for semantic video segmentation. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1959–1968. https://doi.org/10.1109/WACV45572.2020.9093531

    View More
  • AQD: Towards Accurate Quantized Object Detection

    Liu, J., Zhuang, B., Chen, P., Tan, M., & Shen, C. (2020). AQD: Towards Accurate Quantized Object Detection. Retrieved from http://arxiv.org/abs/2007.06919

    View More
  • Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

    Liu, L., Lu, H., Zou, H., Xiong, H., Cao, Z., & Shen, C. (2020). Weighing Counts: Sequential Crowd Counting by Reinforcement Learning. http://arxiv.org/abs/2007.08260

    View More
  • GADE: A Generative Adversarial Approach to Density Estimation and its Applications.

    Abbasnejad, M. E., Shi, J., van den Hengel, A., & Liu, L. (2020). GADE: A Generative Adversarial Approach to Density Estimation and its Applications. International Journal of Computer Vision, 128(10–11), 2731–2743. https://doi.org/10.1007/s11263-020-01360-9

    View More
  • Reverie: Remote embodied visual referring expression in real indoor environments

    Qi, Y., Wu, Q., Anderson, P., Wang, X., Wang, W. Y., Shen, C., & Van Den Hengel, A. (2020). Reverie: Remote embodied visual referring expression in real indoor environments. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 9979–9988. https://doi.org/10.1109/CVPR42600.2020.01000

    View More
  • Training quantized neural networks with a full-precision auxiliary module

    Zhuang, B., Liu, L., Tan, M., Shen, C., & Reid, I. (2020). Training quantized neural networks with a full-precision auxiliary module. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1485–1494. https://doi.org/10.1109/CVPR42600.2020.00156

    View More
  • A Robust Attentional Framework for License Plate Recognition in the Wild

    Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., & Zhang, Y. (2020). A Robust Attentional Framework for License Plate Recognition in the Wild. IEEE Transactions on Intelligent Transportation Systems, 1–10. https://doi.org/10.1109/tits.2020.3000072

    View More
  • Quantum Robust Fitting

    Chin, T.-J., Suter, D., Chng, S.-F., & Quach, J. (2020). Quantum Robust Fitting. Retrieved from http://arxiv.org/abs/2006.06986

    View More
  • FCOS: A Simple and Strong Anchor-free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence

    Tian, Z., Shen, C., Chen, H., & He, T. (2020). FCOS: A Simple and Strong Anchor-free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3032166

    View More
  • Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection

    Zhang, J., Xie, Y., Liao, Z., Pang, G., Verjans, J., Li, W., Sun, Z., He, J., Shen, C. & Xia, Y. (2020). Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection. Retrieved from http://arxiv.org/abs/2003.12338

    View More
  • Soft Expert Reward Learning for Vision-and-Language Navigation

    Wang, H., Wu, Q., & Shen, C. (2020). Soft Expert Reward Learning for Vision-and-Language Navigation. Retrieved from http://arxiv.org/abs/2007.10835

    View More
  • Object-and-Action Aware Model for Visual Language Navigation

    Qi, Y., Pan, Z., Zhang, S., Hengel, A. van den, & Wu, Q. (2020). Object-and-Action Aware Model for Visual Language Navigation. http://arxiv.org/abs/2007.14626

    View More
  • Improving Generative Adversarial Networks with Local Coordinate Coding

    Cao, J., Guo, Y., Wu, Q., Shen, C., Huang, J., & Tan, M. (2020). Improving Generative Adversarial Networks with Local Coordinate Coding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3012096

    View More
  • Guided Co-Segmentation Network for Fast Video Object Segmentation

    Liu, W., Lin, G., Zhang, T., & Liu, Z. (2020). Guided Co-Segmentation Network for Fast Video Object Segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 1–1. https://doi.org/10.1109/tcsvt.2020.3010293

    View More
  • AE TextSpotter: Learning Visual and Linguistic Representation for Ambiguous Text Spotting

    Wang, W., Liu, X., Ji, X., Xie, E., Liang, D., Yang, Z., Lu, T., Shen, C., & Luo, P. (2020). AE TextSpotter: Learning Visual and Linguistic Representation for Ambiguous Text Spotting. Retrieved from http://arxiv.org/abs/2008.00714

    View More
  • Pairwise Relation Learning for Semi-supervised Gland Segmentation

    Xie, Y., Zhang, J., Liao, Z., Verjans, J., Shen, C., & Xia, Y. (2020). Pairwise Relation Learning for Semi-supervised Gland Segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12265 LNCS, 417–427. https://doi.org/10.1007/978-3-030-59722-1_40

    View More
  • How Trustworthy are the Existing Performance Evaluations for Basic Vision Tasks?

    Rezatofighi, H., Nguyen, T. T. D., Vo, B.-N., Vo, B.-T., Savarese, S., & Reid, I. (2020). How Trustworthy are the Existing Performance Evaluations for Basic Vision Tasks? Retrieved from http://arxiv.org/abs/2008.03533

    View More
  • A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots

    Mao, J., Hu, X., Zhang, L., He, X., & Milford, M. (2020). A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 100(1), 289–310. https://doi.org/10.1007/s10846-020-01190-4

    View More
  • Towards Simulating Semantic Onboard UAV Navigation

    Mandel, N., Alvarez, F. V., Milford, M., & Gonzalez, F. (2020, March 1). Towards Simulating Semantic Onboard UAV Navigation. IEEE Aerospace Conference Proceedings. https://doi.org/10.1109/AERO47225.2020.9172771

    View More
  • An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance

    van Goor, P., Mahony, R., Hamel, T., & Trumpf, J. (2020). An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance. ArXiv. http://arxiv.org/abs/2005.14347

    View More
  • Fast postprocessing for difficult discrete energy minimization problems

    Akhter, I., Cheong, L. F., & Hartley, R. (2020). Fast postprocessing for difficult discrete energy minimization problems. In Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020 (pp. 3462–3471).

    View More
  • Single Image Optical Flow Estimation with an Event Camera

    Pan, L., Liu, M., & Hartley, R. (2020). Single Image Optical Flow Estimation with an Event Camera, CVPR 2020. http://arxiv.org/abs/2004.00347

    View More
  • A Stochastic Conditioning Scheme for Diverse Human Motion Prediction

    Aliakbarian, S., Sadat, F., †1, S., Salzmann, M., Petersson, L., & Gould, S. (2020). A Stochastic Conditioning Scheme for Diverse Human Motion Prediction *. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5223–5232).

    View More
  • Blended convolution and synthesis for efficient discrimination of 3D shapes

    Ramasinghe, S., Khan, S., Barnes, N., & Gould, S. (2020). Blended convolution and synthesis for efficient discrimination of 3D shapes. In Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020 (pp. 21–31).

    View More
  • Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution

    Song, X., Dai, Y., Zhou, D., Liu, L., Li, W., Li, H., & Yang, R. (2020). Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

    View More
  • Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry

    Zhou, D., Dai, Y., & Li, H. (2020). Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry. IEEE Transactions on Intelligent Transportation Systems, 21(2), 791–802. https://doi.org/10.1109/TITS.2019.2900330

    View More
  • Geometry to the Rescue : 3D Instance Reconstruction from a Cluttered Scene

    Li, L., & Barnes, N. (2020). Geometry to the Rescue : 3D Instance Reconstruction from a Cluttered Scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

    View More
  • Guest Editorial: Special Issue on ACCV 2018

    Jawahar, C. V., Li, H., Mori, G., & Schindler, K. (2020). Guest Editorial: Special Issue on ACCV 2018. International Journal of Computer Vision, 128(4), 909.

    View More
  • Proposal-free temporal moment localization of a natural-language query in video using guided attention

    Rodriguez-Opazo, C., Marrese-Taylor, E., Saleh, F. S., Li, H., & Gould, S. (2020). Proposal-free temporal moment localization of a natural-language query in video using guided attention. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 2453–2462. https://doi.org/10.1109/WACV45572.2020.9093328

    View More
  • Rethinking Class Relations: Absolute-relative Few-shot Learning

    Zhang, H., Torr, P. H. S., Li, H., Jian, S., & Koniusz, P. (2020). Rethinking Class Relations: Absolute-relative Few-shot Learning, 1–10.

    View More
  • The IKEA ASM Dataset: Understanding People Assembling Furniture through Actions, Objects and Pose

    Ben-Shabat, Y., Yu, X., Saleh, F. S., Campbell, D., Rodriguez-Opazo, C., Li, H., & Gould, S. (2020). The IKEA ASM Dataset: Understanding People Assembling Furniture through Actions, Objects and Pose.

    View More
  • Understanding the Effects of Data Parallelism and Sparsity on Neural Network Training

    Lee, N., Ajanthan, T., Torr, P. H. S., & Jaggi, M. (2020). Understanding the Effects of Data Parallelism and Sparsity on Neural Network Training.

    View More
  • VDO-SLAM: A Visual Dynamic Object-aware SLAM System

    Zhang, J., Henein, M., Mahony, R., & Ila, V. (2020). VDO-SLAM: A Visual Dynamic Object-aware SLAM System.

    View More
  • Robust Ego and Object 6-DoF Motion Estimation and Tracking

    Zhang, J., Henein, M., Mahony, R., & Viorela, I. (2020). Robust Ego and Object 6-DoF Motion Estimation and Tracking. IROS 2020.

    View More
  • Cost Volume Pyramid Based Depth Inference for Multi-View Stereo

    Yang, J., Mao, W., Alvarez, J. M., & Liu, M. (2020). Cost volume pyramid based depth inference for multi-view stereo. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4876–4885. https://doi.org/10.1109/CVPR42600.2020.00493

    View More
  • From Depth What Can You See? Depth Completion via Auxiliary Image Reconstruction

    Lu, K., Barnes, N., Anwar, S., & Zheng, L. (2020). From depth what can you see? Depth completion via auxiliary image reconstruction. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 11303–11312. https://doi.org/10.1109/CVPR42600.2020.01132

    View More
  • A Signal Propagation Perspective for Pruning Neural Networks at initialization

    Lee, N., Ajanthan, T., Gould, S., & Torr, P. H. S. (2019). A Signal Propagation Perspective for Pruning Neural Networks at Initialization. ArXiv. http://arxiv.org/abs/1906.06307

    View More
  • Memorable Maps: A Framework for Re-Defining Places in Visual Place Recognition

    Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. D. (2020). Memorable Maps: A Framework for Re-Defining Places in Visual Place Recognition. IEEE Transactions on Intelligent Transportation Systems, 1–15. https://doi.org/10.1109/tits.2020.3001228

    View More
  • Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision

    Rosenberger, P., Cosgun, A., Newbury, R., Kwan, J., Ortenzi, V., Corke, P., & Grafinger, M. (2020). Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision. http://arxiv.org/abs/2006.01797

    View More
  • A Review of Current Approaches for UAV Autonomous Mission Planning for Mars Biosignatures Detection.

    Serna, J. G., Vanegas, F., Gonzalez, F., & Flannery, D. (2020). A Review of Current Approaches for UAV Autonomous Mission Planning for Mars Biosignatures Detection. 1–15. https://doi.org/10.1109/aero47225.2020.9172467

    View More
  • Learning Landmark Guided Embeddings for Animal Re-identification

    Moskvyak, O., Maire, F., Dayoub, F., & Baktashmotlagh, M. (2020). Learning Landmark Guided Embeddings for Animal Re-identification. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision Workshops, WACVW 2020, 12–19. https://doi.org/10.1109/WACVW50321.2020.9096932

    View More
  • A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded System on UAVs

    Mandel, Nicolas & Milford, Michael & Gonzalez, Felipe. (2020). A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded System on UAVs. Sensors. 20. 4420. 10.3390/s20164420.

    View More
  • JFR special issue on agricultural robotics, part 2

    Lehnert, C., McCool, C., Stachniss, C., Corke, P., Sa, I., Nieto, J., & Henten, E. J. (2020). JFR special issue on agricultural robotics, part 2. Journal of Field Robotics, 37(2), 185–186. https://doi.org/10.1002/rob.21939

    View More
  • Performance improvements of a sweet pepper harvesting robot in protected cropping environments

    Lehnert, C., McCool, C., Sa, I., & Perez, T. (2020). Performance improvements of a sweet pepper harvesting robot in protected cropping environments. Journal of Field Robotics, rob.21973. https://doi.org/10.1002/rob.21973

    View More
  • Special issue on agricultural robotics

    Lehnert, C., McCool, C., Corke, P., Sa, I., Stachniss, C., van Henten, E. J., & Nieto, J. (2020). Special issue on agricultural robotics. In Journal of Field Robotics (Vol. 37, Issue 1, pp. 5–6). John Wiley and Sons Inc. https://doi.org/10.1002/rob.21926

    View More
  • What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles

    Jacobson, A., Zeng, F., Smith, D., Boswell, N., Peynot, T., & Milford, M. (2020). What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles. Journal of Field Robotics, rob.21978. https://doi.org/10.1002/rob.21978

    View More
  • Control of the Final-Phase of Closed-Loop Visual Grasping using Image-Based Visual Servoing

    Haviland, J., Dayoub, F., & Corke, P. (2020). Control of the Final-Phase of Closed-Loop Visual Grasping using Image-Based Visual Servoing. http://arxiv.org/abs/2001.05650

    View More
  • Probabilistic object detection: Definition and evaluation

    Hall, D., Dayoub, F., Skinner, J., Zhang, H., Miller, D., Corke, P., Carneiro, G., Angelova, A., & Sunderhauf, N. (2020). Probabilistic object detection: Definition and evaluation. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1020–1029. https://doi.org/10.1109/WACV45572.2020.9093599

    View More
  • Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency Detection

    Zhang, J., Xie, J., & Barnes, N. (2020). Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency Detection. http://arxiv.org/abs/2007.12211

    View More
  • Learning Arbitrary-Goal Fabric Folding with One Hour of Real Robot Experience

    Lee, R., Ward, D., Cosgun, A., Dasagi, V., Corke, P., & Leitner, J. (2020). Learning Arbitrary-Goal Fabric Folding with One Hour of Real Robot Experience. http://arxiv.org/abs/2010.03209

    View More
  • Self-Driving Vehicles: Key Technical Challenges and Progress off the Road

    Milford, M., Anthony, S., & Scheirer, W. (2020). Self-Driving Vehicles: Key Technical Challenges and Progress off the Road. IEEE Potentials, 39(1), 37–45. https://doi.org/10.1109/MPOT.2019.2939376

    View More
  • Understanding the Importance of Heart Sound Segmentation for Heart Anomaly Detection

    Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). Understanding the Importance of Heart Sound Segmentation for Heart Anomaly Detection. Retrieved from http://arxiv.org/abs/2005.10480

    View More
  • Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function

    Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function. Computer Vision and Image Understanding, 102989. https://doi.org/10.1016/j.cviu.2020.102989

    View More
  • Autonomous UAV Navigation for Active Perception of Targets in Uncertain and Cluttered Environments

    Sandino, J., Vanegas, F., Gonzalez, F., & Maire, F. (2020). Autonomous UAV Navigation for active perception of targets in uncertain and cluttered environments. Proceedings of 2020 IEEE Aerospace Conference.

    View More
  • Special Issue on Deep Learning for Robotic Vision

    Angelova, A., Carneiro, G., Sünderhauf, N., & Leitner, J. (2020, May 1). Special Issue on Deep Learning for Robotic Vision. International Journal of Computer Vision. https://doi.org/10.1007/s11263-020-01324-z

    View More
  • VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change

    Zaffar, M., Ehsan, S., Milford, M., Flynn, D., & McDonald-Maier, K. (2020). VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change. Retrieved from http://arxiv.org/abs/2005.08135

    View More
  • Online Inverse Optimal Control for Control-Constrained Discrete-Time Systems on Finite and Infinite Horizons

    Molloy, T. L., Ford, J. J., & Perez, T. (2020). Online Inverse Optimal Control for Control-Constrained Discrete-Time Systems on Finite and Infinite Horizons. Proceedings of the IEEE Conference on Decision and Control, 2018-December, 1663–1668. Retrieved from http://arxiv.org/abs/2005.06153

    View More
  • Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017

    Leitner, J., Morrison, D., Milan, A., Kelly-Boxall, N., McTaggart, M., Tow, A. W., & Corke, P. (2020). Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017. In Advances on Robotic Item Picking (pp. 125–148). https://doi.org/10.1007/978-3-030-35679-8_11

    View More
  • Active Preference Learning using Maximum Regret

    Wilde, N., Kulic, D., & Smith, S. L. (2020). Active Preference Learning using Maximum Regret. http://arxiv.org/abs/2005.04067

    View More
  • Supportive Actions for Manipulation in Human-Robot Coworker Teams

    Bansal, S., Newbury, R., Chan, W., Cosgun, A., Allen, A., Kulić, D., Drummond, D., & Isbell, C. (2020). Supportive Actions for Manipulation in Human-Robot Coworker Teams. Retrieved from http://arxiv.org/abs/2005.00769

    View More
  • Curiosity Notebook: A Platform for Learning by Teaching Conversational Agents

    Law, E., Ravari, P. B., Chhibber, N., Kulic, D., Lin, S., Pantasdo, K. D., Ceha, J., Suh, S., & Dillen, N. (2020). Curiosity Notebook: A Platform for Learning by Teaching Conversational Agents. https://doi.org/10.1145/3334480.3382783

    View More
  • Haptics in Teleoperated Medical Interventions: Force Measurement, Haptic Interfaces and their Influence on User’s Performance

    Abdi, E., Kulic, D., & Croft, E. (2020). Haptics in teleoperated medical interventions: Force measurement, haptic interfaces and their influence on users performance. IEEE Transactions on Biomedical Engineering, 1–1. https://doi.org/10.1109/tbme.2020.2987603

    View More
  • End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification

    Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification. Retrieved from http://arxiv.org/abs/2005.03222

    View More
  • Context from within: Hierarchical context modeling for semantic segmentation

    Nguyen, K., Fookes, C., & Sridharan, S. (2020). Context from within: Hierarchical context modeling for semantic segmentation. Pattern Recognition, 105, 107358. https://doi.org/10.1016/j.patcog.2020.107358

    View More
  • Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional Emotion Recognition

    Nguyen, D., Nguyen, D. T., Zeng, R., Nguyen, T. T., Tran, S. N., Nguyen, T., Sridharan, S., & Fookes, C. (2020). Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional Emotion Recognition.

    View More
  • Attention Driven Fusion for Multi-Modal Emotion Recognition

    Priyasad, D., Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020, April 9). Attention Driven Fusion for Multi-Modal Emotion Recognition. 3227–3231. https://doi.org/10.1109/icassp40776.2020.9054441

    View More
  • Neural Memory Plasticity for Medical Anomaly Detection

    Fernando, T., Denman, S., Ahmedt-Aristizabal, D., Sridharan, S., Laurens, K. R., Johnston, P., & Fookes, C. (2020). Neural memory plasticity for medical anomaly detection. Neural Networks, 127, 67–81. https://doi.org/10.1016/j.neunet.2020.04.011

    View More
  • Identification of Children At Risk of Schizophrenia via Deep Learning and EEG Responses

    Ahmedt Aristizabal, D., Fernando, T., Denman, S., Robinson, J. E., Sridharan, S., Johnston, P. J., Laurens, K.R., & Fookes, C. (2020). Identification of Children At Risk of Schizophrenia via Deep Learning and EEG Responses. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2020.2984238

    View More
  • Bio-inspired multi-scale fusion

    Hausler, S., Chen, Z., Hasselmo, M. E., & Milford, M. (2020). Bio-inspired multi-scale fusion. Biological Cybernetics, 114(2), 209–229. https://doi.org/10.1007/s00422-020-00831-z

    View More
  • Class Anchor Clustering: a Distance-based Loss for Training Open Set Classifiers

    Miller, D., Sünderhauf, N., Milford, M., & Dayoub, F. (2020). Class Anchor Clustering: a Distance-based Loss for Training Open Set Classifiers. Retrieved from http://arxiv.org/abs/2004.02434

    View More
  • Counting Objects by Blockwise Classification

    Liu, L., Lu, H., Xiong, H., Xian, K., Cao, Z., & Shen, C. (2020). Counting objects by blockwise classification. IEEE Transactions on Circuits and Systems for Video Technology, 30(10), 3513–3527. https://doi.org/10.1109/TCSVT.2019.2942970

    View More
  • Learning to Place Objects onto Flat Surfaces in Human-Preferred Orientations

    Newbury, R., He, K., Cosgun, A., & Drummond, T. (2020). Learning to Place Objects onto Flat Surfaces in Human-Preferred Orientations. Retrieved from http://arxiv.org/abs/2004.00249

    View More
  • Low-cost sensors as an alternative for long-term air quality monitoring

    Liu, X., Jayaratne, R., Thai, P., Kuhn, T., Zing, I., Christensen, B., Lamont, R., Dunbabin, M., Zhu, S., Gao, J., Wainwright, D., Neale, D., Kan, R., Kirkwood, J., & Morawska, L. (2020). Low-cost sensors as an alternative for long-term air quality monitoring. Environmental Research, 185, 109438. https://doi.org/10.1016/j.envres.2020.109438

    View More
  • Joint Deep Cross-Domain Transfer Learning for Emotion Recognition

    Nguyen, D., Sridharan, S., Nguyen, D. T., Denman, S., Tran, S. N., Zeng, R., & Fookes, C. (2020). Joint Deep Cross-Domain Transfer Learning for Emotion Recognition. (2018). Retrieved from http://arxiv.org/abs/2003.11136

    View More
  • A Software System for Human-Robot Interaction To Collect Research Data: A HTML/Javascript Service on the Pepper Robot

    Suddrey, G., & Robinson, N. (2020). A Software System for Human-Robot Interaction To Collect Research Data. Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 459–461. https://doi.org/10.1145/3371382.3378287

    View More
  • How to Train Your Event Camera Neural Network

    Stoffregen, T., Scheerlinck, C., Scaramuzza, D., Drummond, T., Barnes, N., Kleeman, L., & Mahony, R. (2020). How to Train Your Event Camera Neural Network. Retrieved from http://arxiv.org/abs/2003.09078

    View More
  • DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares

    Ben-Shabat Y., Gould S. (2020) DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_2

    View More
  • High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks

    Pfister, F. M. J., Um, T. T., Pichler, D. C., Goschenhofer, J., Abedinpour, K., Lang, M., Endo, S., Ceballos-Baumann, A. O., Hirche, S., Bischl, B., Kulić, D., & Fietzek, U. M. (2020). High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks. Scientific Reports, 10(1), 5860. https://doi.org/10.1038/s41598-020-61789-3

    View More
  • Generative Low-bitwidth Data Free Quantization

    Xu, S., Li, H., Zhuang, B., Liu, J., Cao, J., Liang, C., & Tan, M. (2020). Generative Low-bitwidth Data Free Quantization. Retrieved from http://arxiv.org/abs/2003.03603

    View More
  • Efficient Semantic Video Segmentation with Per-frame Inference

    Liu, Y., Shen, C., Yu, C., & Wang, J. (2020). Efficient Semantic Video Segmentation with Per-frame Inference. Retrieved from https://tinyurl.com/segment-video

    View More
  • PAC-Bayesian Meta-learning with Implicit Prior

    Nguyen, C., Do, T.-T., & Carneiro, G. (2020). PAC-Bayesian Meta-learning with Implicit Prior. Retrieved from http://arxiv.org/abs/2003.02455

    View More
  • Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy

    "Gustavo Carneiro, Leonardo Zorron Cheng Tao Pu, Rajvinder Singh, Alastair Burt,
    Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy,
    Medical Image Analysis,Volume 62,2020,101653,ISSN 1361-8415,https://doi.org/10.1016/j.media.2020.101653."

    View More
  • ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network

    Liu, Y., Chen, H., Shen, C., He, T., Jin, L., & Wang, L. (2020). ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network. Retrieved from http://arxiv.org/abs/2002.10200

    View More
  • Globally Optimal Contrast Maximisation for Event-based Motion Estimation

    Liu, D., Parra, Á., & Chin, T.-J. (2020). Globally Optimal Contrast Maximisation for Event-based Motion Estimation. Retrieved from http://arxiv.org/abs/2002.10686

    View More
  • On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering

    Wang, X., Liu, Y., Shen, C., Ng, C. C., Luo, C., Jin, L., Chan, C. S., van den Hengel, A., & Wang, L. (2020). On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering. Retrieved from http://arxiv.org/abs/2002.10215

    View More
  • Learning Deep Gradient Descent Optimization for Image Deconvolution

    Gong, D., Zhang, Z., Shi, Q., Van Den Hengel, A., Shen, C., & Zhang, Y. (2020). Learning Deep Gradient Descent Optimization for Image Deconvolution. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5468–5482. https://doi.org/10.1109/TNNLS.2020.2968289

    View More
  • 3D Gated Recurrent Fusion for Semantic Scene Completion

    Liu, Y., Li, J., Yan, Q., Yuan, X., Zhao, C., Reid, I., & Cadena, C. (2020). 3D Gated Recurrent Fusion for Semantic Scene Completion. Retrieved from http://arxiv.org/abs/2002.07269

    View More
  • Hyperspectral Classification Based on 3D Asymmetric Inception Network with Data Fusion Transfer Learning

    Zhang, H., Liu, Y., Fang, B., Li, Y., Liu, L., & Reid, I. (2020). Hyperspectral Classification Based on 3D Asymmetric Inception Network with Data Fusion Transfer Learning. Retrieved from https://github.com/UniLauX/AINet

    View More
  • DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data

    Yin, W., Wang, X., Shen, C., Liu, Y., Tian, Z., Xu, S., Sun, C., & Renyin, D. (2020). DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data. Retrieved from http://arxiv.org/abs/2002.00569

    View More
  • Learn to Predict Sets Using Feed-Forward Neural Networks

    Rezatofighi, H., Kaskman, R., Motlagh, F. T., Shi, Q., Milan, A., Cremers, D., Leal-Taixé, L., & Reid, I. (2020). Learn to Predict Sets Using Feed-Forward Neural Networks. Retrieved from http://arxiv.org/abs/2001.11845

    View More
  • Separating Content from Style Using Adversarial Learning for Recognizing Text in the Wild

    Luo, C., Lin, Q., Liu, Y., Jin, L., & Shen, C. (2020). Separating Content from Style Using Adversarial Learning for Recognizing Text in the Wild. Retrieved from http://arxiv.org/abs/2001.04189

    View More
  • Memorizing Comprehensively to Learn Adaptively: Unsupervised Cross-Domain Person Re-ID with Multi-level Memory

    Zhang, X., Gong, D., Cao, J., & Shen, C. (2020). Memorizing Comprehensively to Learn Adaptively: Unsupervised Cross-Domain Person Re-ID with Multi-level Memory. Retrieved from http://arxiv.org/abs/2001.04123

    View More
  • From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting

    Xiong, H., Lu, H., Liu, C., Liu, L., Shen, C., & Cao, Z. (2020). From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting. Retrieved from https://tinyurl.com/SS-DCNet.

    View More
  • Learning and Memorizing Representative Prototypes for 3D Point Cloud Semantic and Instance Segmentation

    He, T., Gong, D., Tian, Z., & Shen, C. (2020). Learning and Memorizing Representative Prototypes for 3D Point Cloud Semantic and Instance Segmentation.

    View More
  • Learning to Zoom-in via Learning to Zoom-out: Real-world Super-resolution by Generating and Adapting Degradation

    Gong, D., Sun, W., Shi, Q., Van Den Hengel, A., & Zhang, Y. (2020). Learning to Zoom-in via Learning to Zoom-out: Real-world Super-resolution by Generating and Adapting Degradation.https://arxiv.org/pdf/2001.02381.pdf

    View More
  • Discrimination-aware Network Pruning for Deep Model Compression

    Liu, J., Zhuang, B., Zhuang, Z., Guo, Y., Huang, J., Zhu, J., & Tan, M. (2020). Discrimination-aware Network Pruning for Deep Model Compression. Retrieved from https://github.com/SCUT-AILab/DCP.

    View More
  • BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation

    Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., & Yan, Y. (2020). Blendmask: Top-down meets bottom-up for instance segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8570–8578. https://doi.org/10.1109/CVPR42600.2020.00860

    View More
  • Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images

    Dunnhofer, M., Antico, M., Sasazawa, F., Takeda, Y., Camps, S., Martinel, N., Micheloni, C., Carneiro, G., & Fontanarosa, D. (2020). Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Medical Image Analysis, 60. https://doi.org/10.1016/j.media.2019.101631

    View More
  • Fast Image Reconstruction with an Event Camera

    Scheerlinck, C., Rebecq, H., Gehrig, D., Barnes, N., Mahony, R. E., & Scaramuzza, D. (2020). Fast Image Reconstruction with an Event Camera. Retrieved from https://github.com/uzh-rpg/rpg

    View More
  • Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization

    Hua, M. D., Trumpf, J., Hamel, T., Mahony, R., & Morin, P. (2020). Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization. Automatica, 115, 1–10.

    View More
  • Switchable Precision Neural Networks

    Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Switchable Precision Neural Networks. Retrieved from http://arxiv.org/abs/2002.02815

    View More
  • Automatic Pruning for Quantized Neural Networks

    Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Automatic Pruning for Quantized Neural Networks. Retrieved from http://arxiv.org/abs/2002.00523

    View More
  • OpenGAN: Open Set Generative Adversarial Networks

    Ditria L., Meyer B.J., Drummond T. (2021) OpenGAN: Open Set Generative Adversarial Networks. In: Ishikawa H., Liu CL., Pajdla T., Shi J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science, vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_29

    View More
  • Low-cost PM2. 5 Sensors: An Assessment of Their Suitability for Various Applications

    Jayaratne, R., Liu, X., Ahn, K.-H., Asumadu-Sakyi, A., Fisher, G., Gao, J., Mabon, A., Mazaheri, M., Mullins, B., Nyaku, M., Ristovki, Z., Scorgie, Y., Thai, P., Dunbabin, M., & Morawska, L. (2020). Low-cost PM 2.5 Sensors: An Assessment of their Suitability for Various Applications. Aerosol and Air Quality Research, 20, 520–532. https://doi.org/10.4209/aaqr.2018.10.0390

    View More
  • String stable integral control of vehicle platoons with disturbances

    Silva, G. F., Donaire, A., McFadyen, A., & Ford, J. (2020). String stable integral control of vehicle platoons with disturbances. Retrieved from http://arxiv.org/abs/2002.09666

    View More
  • Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats

    Sekar, S., Panchal, S. K., Ghattamaneni, N. K., Brown, L., Crawford, R., Xiao, Y., & Prasadam, I. (2020). Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients, 12(2), 509. https://doi.org/10.3390/nu12020509

    View More
  • Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning

    Jonmohamadi, Y., Takeda, Y., Liu, F., Sasazawa, F., Maicas, G., Crawford, R., Roberts, J., Pandey, A.K., & Carneiro, G. (2020). Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning. IEEE Access, 1–1. https://doi.org/10.1109/access.2020.2980025

    View More
  • Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms

    Schaffter, T., Buist, D. S. M., Lee, C. I., Nikulin, Y., Ribli, D., Guan, Y., … Jung, H. (2020). Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 3(3), e200265. https://doi.org/10.1001/jamanetworkopen.2020.0265

    View More
  • LSTM guided ensemble correlation filter tracking with appearance model pool

    Jain, M., Subramanyam, A. V., Denman, S., Sridharan, S., & Fookes, C. (2020). LSTM guided ensemble correlation filter tracking with appearance model pool. Computer Vision and Image Understanding, 195, 102935. https://doi.org/10.1016/j.cviu.2020.102935

    View More
  • Semantic Consistency and Identity Mapping Multi-Component Generative Adversarial Network for Person Re-Identification

    Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Semantic Consistency and Identity Mapping Multi-Component Generative Adversarial Network for Person Re-Identification.

    View More
  • A Multiple Decoder CNN for Inverse Consistent 3D Image Registration

    Nazib, A., Fookes, C., Salvado, O., & Perrin, D. (2020). A Multiple Decoder CNN for Inverse Consistent 3D Image Registration. Retrieved from http://arxiv.org/abs/2002.06468

    View More
  • Enhancing Feature Invariance with Learned Image Transformations for Image Retrieval

    Tursun, O., Denman, S., Sridharan, S., & Fookes, C. (2020). Enhancing Feature Invariance with Learned Image Transformations for Image Retrieval. Retrieved from http://arxiv.org/abs/2002.01642

    View More
  • EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility in robotic manipulation

    Morrison, D., Corke, P., & Leitner, J. (2020). EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility in robotic manipulation. Retrieved from http://arxiv.org/abs/2003.01314

    View More
  • Maximising Manipulability During Resolved-Rate Motion Control

    Haviland, J., & Corke, P. (2020). Maximising Manipulability During Resolved-Rate Motion Control. Retrieved from http://arxiv.org/abs/2002.11901

    View More
  • Robot Navigation in Unseen Spaces using an Abstract Map

    Talbot, B., Dayoub, F., Corke, P., & Wyeth, G. (2020). Robot Navigation in Unseen Spaces using an Abstract Map. Retrieved from http://arxiv.org/abs/2001.11684

    View More
  • Multiplicative Controller Fusion: A Hybrid Navigation Strategy For Deployment in Unknown Environments

    Rana, K., Dasagi, V., Talbot, B., Milford, M., & Sünderhauf, N. (2020). Multiplicative Controller Fusion: A Hybrid Navigation Strategy For Deployment in Unknown Environments. Retrieved from http://arxiv.org/abs/2003.05117

    View More
  • MVP: Unified Motion and Visual Self-Supervised Learning for Large-Scale Robotic Navigation

    Chancán, M., & Milford, M. (2020). MVP: Unified Motion and Visual Self-Supervised Learning for Large-Scale Robotic Navigation. Retrieved from http://arxiv.org/abs/2003.00667

    View More
  • Hierarchical Multi-Process Fusion for Visual Place Recognition

    Hausler, S., & Milford, M. (2020). Hierarchical Multi-Process Fusion for Visual Place Recognition. Retrieved from http://arxiv.org/abs/2002.03895

    View More
  • A Hybrid Compact Neural Architecture for Visual Place Recognition

    Chancan, M., Hernandez-Nunez, L., Narendra, A., Barron, A. B., & Milford, M. (2020). A Hybrid compact neural architecture for visual place recognition. IEEE Robotics and Automation Letters, 5(2), 993–1000. https://doi.org/10.1109/LRA.2020.2967324

    View More
  • Exploring Performance Bounds of Visual Place Recognition Using Extended Precision

    Ferrarini, B., Waheed, M., Waheed, S., Ehsan, S., Milford, M. J., & McDonald-Maier, K. D. (2020). Exploring performance bounds of visual place recognition using extended precision. IEEE Robotics and Automation Letters, 5(2), 1688–1695. https://doi.org/10.1109/LRA.2020.2969197

    View More
  • CoHOG: A Light-Weight, Compute-Efficient, and Training-Free Visual Place Recognition Technique for Changing Environments

    Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. (2020). CoHOG: A light-weight, compute-efficient, and training-free visual place recognition technique for changing environments. IEEE Robotics and Automation Letters, 5(2), 1835–1842. https://doi.org/10.1109/LRA.2020.2969917

    View More
  • Model-free vision-based shaping of deformable plastic materials

    Cherubini, A., Ortenzi, V., Cosgun, A., Lee, R., & Corke, P. (2020). Model-free vision-based shaping of deformable plastic materials. The International Journal of Robotics Research, 027836492090768. https://doi.org/10.1177/0278364920907684

    View More
  • Deep Clustering With Sample-Assignment Invariance Prior

    Peng, X., Zhu, H., Feng, J., Shen, C., Zhang, H., & Zhou, J. T. (2020). Deep Clustering with Sample-Assignment Invariance Prior. IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4857–4868. https://doi.org/10.1109/TNNLS.2019.2958324

    View More
  • Multiple Instance Learning with Emerging Novel Class

    Wei, X.-S., Ye, H.-J., Mu, X., Wu, J., Shen, C., & Zhou, Z.-H. (2019). Multiple Instance Learning with Emerging Novel Class. IEEE Transactions on Knowledge and Data Engineering, 1–1. https://doi.org/10.1109/tkde.2019.2952588

    View More
  • Joint Deep Learning of Facial Expression Synthesis and Recognition

    Yan, Y., Huang, Y., Chen, S., Shen, C., & Wang, H. (2020). Joint Deep Learning of Facial Expression Synthesis and Recognition. IEEE Transactions on Multimedia, 22(11), 2792–2807. https://doi.org/10.1109/TMM.2019.2962317

    View More
  • Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces

    Yu, X., Shiri, F., Ghanem, B., & Porikli, F. (2020). Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(9), 2148–2164. https://doi.org/10.1109/TPAMI.2019.2914039

    View More
  • Hierarchical Attention Network for Action Segmentation

    Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2020). Hierarchical Attention Network for Action Segmentation. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2020.01.023

    View More
  • Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach

    Park, C., Moghadam, P., Kim, S., Sridharan, S., & Fookes, C. (2020). Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach. IEEE Robotics and Automation Letters, 1–1. https://doi.org/10.1109/LRA.2020.2969164

    View More
  • Bacterial Profile, Multi-Drug Resistance and Seasonality Following Lower Limb Orthopaedic Surgery in Tropical and Subtropical Australian Hospitals: An Epidemiological Cohort Study

    Vickers, M. L., Ballard, E. L., Harris, P. N. A., Knibbs, L. D., Jaiprakash, A., Dulhunty, J. M., … Parkinson, B. (2020). Bacterial Profile, Multi-Drug Resistance and Seasonality Following Lower Limb Orthopaedic Surgery in Tropical and Subtropical Australian Hospitals: An Epidemiological Cohort Study. International Journal of Environmental Research and Public Health, 17(2), 657. https://doi.org/10.3390/ijerph17020657

    View More
  • Deep learning for US image quality assessment based on femoral cartilage boundaries detection in autonomous knee arthroscopy

    Antico, M., Fontanarosa, D., Carneiro, G., Vukovic, D., Camps, S. M., Sasazawa, F., … Crawford, R. (2020). Deep learning for US image quality assessment based on femoral cartilage boundaries detection in autonomous knee arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. https://doi.org/10.1109/TUFFC.2020.2965291

    View More
  • Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations

    Garg, S., & Milford, M. (2020). Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations. Retrieved from http://arxiv.org/abs/2001.08434

    View More
  • Towards Surgical Robots: Understanding Interaction Challenges in Knee Surgery

    Opie, J., Jaiprakash, A., Ploderer, B., Brereton, M., & Roberts, J. (2019). Towards Surgical Robots. Proceedings of the 31st Australian Conference on Human-Computer-Interaction, 255–265. https://doi.org/10.1145/3369457.3370916

    View More
  • Close-Proximity Underwater Terrain Mapping Using Learning-based Coarse Range Estimation

    Arain, B., Dayoub, F., Rigby, P., & Dunbabin, M. (2020). Close-Proximity Underwater Terrain Mapping Using Learning-based Coarse Range Estimation. Retrieved from http://arxiv.org/abs/2001.00330

    View More
  • A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS

    Hinas, A., Ragel, R., Roberts, J., & Gonzalez, F. (2020). A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS. Sensors, 20(1), 272. https://doi.org/10.3390/s20010272

    View More
  • Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control

    Molloy, T. L., Inga, J., Flad, M., Ford, J. J., Perez, T., & Hohmann, S. (2020). Inverse open-loop noncooperative differential games and inverse optimal control. IEEE Transactions on Automatic Control, 65(2), 897–904. https://doi.org/10.1109/TAC.2019.2921835

    View More
  • An Update on Retinal Prostheses

    Ayton, L. N., Barnes, N., Dagnelie, G., Fujikado, T., Goetz, G., Hornig, R., Jones, B. W., Muqit, M. M. K., Rathbun, D. L., Stingl, K., Weiland, J. D., & Petoe, M. A. (2020). An update on retinal prostheses. In Clinical Neurophysiology (Vol. 131, Issue 6, pp. 1383–1398). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2019.11.029

    View More
  • Correlation-aware Adversarial Domain Adaptation and Generalization

    Rahman, M. M., Fookes, C., Baktashmotlagh, M., & Sridharan, S. (2019). Correlation-aware Adversarial Domain Adaptation and Generalization. Pattern Recognition, 107124. https://doi.org/10.1016/j.patcog.2019.107124

    View More
  • Heart Sound Segmentation using Bidirectional LSTMs with Attention

    Fernando, T., Ghaemmaghami, H., Denman, S., Sridharan, S., Hussain, N., & Fookes, C. (2020). Heart Sound Segmentation Using Bidirectional LSTMs with Attention. IEEE Journal of Biomedical and Health Informatics, 24(6), 1601–1609. https://doi.org/10.1109/JBHI.2019.2949516

    View More
  • Joint Stereo Video Deblurring, Scene Flow Estimation and Moving Object Segmentation

    Pan, L., Dai, Y., Liu, M., Porikli, F., & Pan, Q. (2020). Joint stereo video deblurring, scene flow estimation and moving object segmentation. IEEE Transactions on Image Processing, 29, 1748–1761. https://doi.org/10.1109/TIP.2019.2945867

    View More
  • REFUGE Challenge: A Unified Framework for Evaluating Automated Methods for Glaucoma Assessment from Fundus Photographs

    Orlando, J. I., Fu, H., Barbossa Breda, J., van Keer, K., Bathula, D. R., Diaz-Pinto, A., Fang, R., Heng, P-A., Kim, J., Lee, J., Lee, J., Li, X., Liu, P., Lu, S., Murugesan, B., Naranjo, V., Phaye, S S R., Shankaranarayana, S., Sikka, A., Son,J., van den Hengel, A., Wang, S., Wu, J., Wu, Z., Xu, G., Xu, Y., Yin, P., Li, F., Zhang, X., Yanwu, X., Bogunović, H. (2020). REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis, 59, 101570. https://doi.org/10.1016/j.media.2019.101570

    View More
  • A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold

    Gao, Z., Wu, Y., Harandi, M., & Jia, Y. (2020). A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3230–3244. https://doi.org/10.1109/TNNLS.2019.2939177

    View More
  • Robotic and Image-Guided Knee Arthroscopy

    Wu, L., Jaiprakash, A., Pandey, A. K., Fontanarosa, D., Jonmohamadi, Y., Antico, M., Strydom, M., Razjigaev, A., Sasazawa, F., Roberts, J., & Crawford, R. (2020). Robotic and Image-Guided Knee Arthroscopy. In Handbook of Robotic and Image-Guided Surgery (pp. 493–514). https://doi.org/10.1016/b978-0-12-814245-5.00029-3

    View More
  • V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices

    Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., & van den Hengel, A. (2020). V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 12071-12078. https://doi.org/10.1609/aaai.v34i07.6885

    View More
  • Model-free Tracker for Multiple Objects Using Joint Appearance and Motion Inference

    Liu, C., Yao, R., Rezatofighi, S. H., Reid, I., & Shi, Q. (2020). Model-Free Tracker for Multiple Objects Using Joint Appearance and Motion Inference. IEEE Transactions on Image Processing, 29, 277–288. https://doi.org/10.1109/TIP.2019.2928123

    View More
  • One shot segmentation: unifying rigid detection and non-rigid segmentation using elastic regularization

    Nascimento, J. C., & Carneiro, G. (2020). One Shot Segmentation: Unifying Rigid Detection and Non-Rigid Segmentation Using Elastic Regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12), 3054–3070. https://doi.org/10.1109/TPAMI.2019.2922959

    View More
  • Learning Distilled Graph for Large-scale Social Network Data Clusterin

    Liu, W., Gong, D., Tan, M., Shi, Q., Yang, Y., & Hauptmann, A. G. (2019). Learning Distilled Graph for Large-scale Social Network Data Clustering. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2019.2904068

    View More
  • Architecture Search of Dynamic Cells for Semantic Video Segmentation

    Nekrasov, V., Chen, H., Shen, C., & Reid, I. (2020). Architecture Search of Dynamic Cells for Semantic Video Segmentation.

    View More
  • Template-Based Automatic Search of Compact Semantic Segmentation Architectures

    Nekrasov, V., Shen, C., & Reid, I. (2020). Template-Based Automatic Search of Compact Semantic Segmentation Architectures.

    View More

Books

  • Curiosity Notebook: A Platform for Learning by Teaching Conversational Agents

    Law, E., Ravari, P. B., Chhibber, N., Kulic, D., Lin, S., Pantasdo, K. D., Ceha, J., Suh, S., & Dillen, N. (2020). Curiosity Notebook: A Platform for Learning by Teaching Conversational Agents. https://doi.org/10.1145/3334480.3382783

    View More

Book Chapters

  • Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017

    Leitner, J., Morrison, D., Milan, A., Kelly-Boxall, N., McTaggart, M., Tow, A. W., & Corke, P. (2020). Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017. In Advances on Robotic Item Picking (pp. 125–148). https://doi.org/10.1007/978-3-030-35679-8_11

    View More
  • Towards Surgical Robots: Understanding Interaction Challenges in Knee Surgery

    Opie, J., Jaiprakash, A., Ploderer, B., Brereton, M., & Roberts, J. (2019). Towards Surgical Robots. Proceedings of the 31st Australian Conference on Human-Computer-Interaction, 255–265. https://doi.org/10.1145/3369457.3370916

    View More
  • Robotic and Image-Guided Knee Arthroscopy

    Wu, L., Jaiprakash, A., Pandey, A. K., Fontanarosa, D., Jonmohamadi, Y., Antico, M., Strydom, M., Razjigaev, A., Sasazawa, F., Roberts, J., & Crawford, R. (2020). Robotic and Image-Guided Knee Arthroscopy. In Handbook of Robotic and Image-Guided Surgery (pp. 493–514). https://doi.org/10.1016/b978-0-12-814245-5.00029-3

    View More

Journal Articles

  • Fracture-related infection: current methods for prevention and treatment

    Foster, A. L., Moriarty, T. F., Trampuz, A., Jaiprakash, A., Burch, M. A., Crawford, R., Paterson, D. L., Metsemakers, W-J., Schuetz, M., & Richards, R. G. (2020). Fracture-related infection: current methods for prevention and treatment. Expert Review of Anti-Infective Therapy, 18(4), 307–321. https://doi.org/10.1080/14787210.2020.1729740

    View More
  • On the informativeness of measurements in Shiryaev’s Bayesian quickest change detectio

    Ford, J. J., James, J., & Molloy, T. L. (2020). On the informativeness of measurements in Shiryaev’s Bayesian quickest change detection. Automatica, 111, 108645. https://doi.org/10.1016/j.automatica.2019.108645

    View More
  • Event-based visual place recognition with ensembles of temporal windows

    Fischer, T., & Milford, M. (2020). Event-based visual place recognition with ensembles of temporal windows. IEEE Robotics and Automation Letters, 5(4), 6924–6931. https://doi.org/10.1109/LRA.2020.3025505

    View More
  • Preliminary study of the Intel RealSenseTM D415 camera for monitoring respiratory like motion of an irregular surface

    Fielding, A. L., Pandey, A. K., Jonmohamadi, Y., Via, R., Weber, D. C., Lomax, A. J., & Fattori, G. (2020). Preliminary study of the Intel RealSenseTM D415 camera for monitoring respiratory like motion of an irregular surface. IEEE Sensors Journal, 1–1. https://doi.org/10.1109/jsen.2020.2993264

    View More
  • Temporarily-Aware Context Modeling Using Generative Adversarial Networks for Speech Activity Detection

    Fernando, T., Sridharan, S., McLaren, M., Priyasad, D., Denman, S., & Fookes, C. (2020). Temporarily-Aware Context Modeling Using Generative Adversarial Networks for Speech Activity Detection. IEEE/ACM Transactions on Audio Speech and Language Processing, 28, 1159–1169. https://doi.org/10.1109/TASLP.2020.2982297

    View More
  • Detection of Fake and Fraudulent Faces via Neural Memory Networks

    Fernando, T., Fookes, C., Denman, S., & Sridharan, S. (2020). Detection of Fake and Fraudulent Faces via Neural Memory Networks. IEEE Transactions on Information Forensics and Security, 16, 1973–1988. https://doi.org/10.1109/TIFS.2020.3047768

    View More
  • Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion

    Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020). Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion. IEEE Signal Processing Magazine, 38(1), 87–96. https://doi.org/10.1109/MSP.2020.2988287

    View More
  • From known to the unknown: Transferring knowledge to answer questions about novel visual and semantic concept

    Farazi, M. R., Khan, S. H., & Barnes, N. (2020). From known to the unknown: Transferring knowledge to answer questions about novel visual and semantic concepts. Image and Vision Computing, 103, 103985. https://doi.org/10.1016/j.imavis.2020.103985

    View More
  • A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation

    Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation. IEEE Journal of Biomedical and Health Informatics, 1–1. https://doi.org/10.1109/jbhi.2020.3027910

    View More
  • Domain Generalization in Biosignal Classification

    Dissanayake, T., Fernando, T., Denman, S., Ghaemmaghami, H., Sridharan, S., & Fookes, C. (2020). Domain Generalization in Biosignal Classification. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2020.3045720

    View More
  • Increasing ventilator surge capacity in COVID 19 pandemic: Design, manufacture and in vitro-in vivo testing in anaesthetized healthy pigs of a rapid prototyped mechanical ventilator

    Dhanani, J., Pang, G., Pincus, J., Ahern, B., Goodwin, W., Cowling, N., Whitten, G., Abdul-Aziz, M. H., Martin, S., Corke, P., & Laupland, K. B. (2020). Increasing ventilator surge capacity in COVID 19 pandemic: Design, manufacture and in vitro-in vivo testing in anaesthetized healthy pigs of a rapid prototyped mechanical ventilator. BMC Research Notes, 13(1), 1–6. https://doi.org/10.1186/s13104-020-05259-z

    View More
  • Towards Light‐Weight Portrait Matting via Parameter Sharing

    Dai, Y., Lu, H., & Shen, C. (2020). Towards Light‐Weight Portrait Matting via Parameter Sharing. Computer Graphics Forum, cgf.14179. https://doi.org/10.1111/cgf.14179

    View More
  • The Outcome of Total Knee Arthroplasty With and Without Patellar Resurfacing up to 17 Years: A Report From the Australian Orthopaedic Association National Joint Replacement Registry

    Coory, J. A., Tan, K. G., Whitehouse, S. L., Hatton, A., Graves, S. E., & Crawford, R. W. (2020). The Outcome of Total Knee Arthroplasty With and Without Patellar Resurfacing up to 17 Years: A Report From the Australian Orthopaedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(1), 132–138. https://doi.org/10.1016/j.arth.2019.08.007

    View More
  • Benchmarking Simulated Robotic Manipulation through a Real World Dataset

    Collins, J., McVicar, J., Wedlock, D., Brown, R., Howard, D., & Leitner, J. (2020). Benchmarking Simulated Robotic Manipulation through a Real World Dataset. IEEE Robotics and Automation Letters, 5(1), 250–257. https://doi.org/10.1109/LRA.2019.2953663

    View More
  • Mortality and Implant Survival With Simultaneous and Staged Bilateral Total Hip Arthroplasty: Experience From the Australian Orthopedic Association National Joint Replacement Registry

    Calabro, L., Yong, M., Whitehouse, S. L., Hatton, A., de Steiger, R., & Crawford, R. W. (2020). Mortality and Implant Survival With Simultaneous and Staged Bilateral Total Hip Arthroplasty: Experience From the Australian Orthopedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(9), 2518–2524. https://doi.org/10.1016/j.arth.2020.04.027

    View More
  • Fixation Method for Hip Arthroplasty Stem Following Hip Fracture: A Population-Level Cost-Effectiveness Analysis

    Blythe, R., O’Gorman, P. M., Crawford, R. W., Feenan, R., Hatton, A., Whitehouse, S. L., & Graves, N. (2020). Fixation Method for Hip Arthroplasty Stem Following Hip Fracture: A Population-Level Cost-Effectiveness Analysis. Journal of Arthroplasty, 35(6), 1614–1621. https://doi.org/10.1016/j.arth.2020.02.001

    View More
  • Saliency Improvement in Feature-Poor Surgical Environments Using Local Laplacian of Specified Histograms

    Banach, A., Strydom, M., Jaiprakash, A., Carneiro, G., Brown, C., Crawford, R., & McFadyen, A. (2020). Saliency Improvement in Feature-Poor Surgical Environments Using Local Laplacian of Specified Histograms. IEEE Access, 8, 213378–213388. https://doi.org/10.1109/ACCESS.2020.3040187

    View More
  • Effect of Gate Conductance on Hygroscopic Insulator Organic Field‐Effect Transistors

    Arthur, J. N., Chaudhry, M. U., Woodruff, M. A., Pandey, A. K., & Yambem, S. D. (2020). Effect of Gate Conductance on Hygroscopic Insulator Organic Field‐Effect Transistors. Advanced Electronic Materials, 6(5), 1901079. https://doi.org/10.1002/aelm.201901079

    View More
  • Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy

    Antico, M., Vukovic, D., Camps, S. M., Sasazawa, F., Takeda, Y., Le, A. T. H., Jaiprakash, A., Roberts, J., Crawford, R., Fontanarosa, D., & Carneiro, G. (2020). Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(12), 2543–2552. https://doi.org/10.1109/TUFFC.2020.2965291

    View More
  • 4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study

    Antico, M., Sasazawa, F., Takeda, Y., Jaiprakash, A. T., Wille, M. L., Pandey, A. K., Crawford, R., & Fontanarosa, D. (2020). 4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study. IEEE Access, 8, 146331–146341. https://doi.org/10.1109/ACCESS.2020.3014999

    View More
  • Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy

    Antico, M., Sasazawa, F., Dunnhofer, M., Camps, S. M., Jaiprakash, A. T., Pandey, A. K., Crawford, R., Carneiro, G., & Fontanarosa, D. (2020). Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy. Ultrasound in Medicine and Biology, 46(2), 422–435. https://doi.org/10.1016/j.ultrasmedbio.2019.10.015

    View More
  • Supervised Scene Illumination Control in Stereo Arthroscopes for Robot Assisted Minimally Invasive Surgery

    Ali, S., Jonmohamadi, Y., Takeda, Y., Roberts, J., Crawford, R., & Pandey, A. K. (2020). Supervised Scene Illumination Control in Stereo Arthroscopes for Robot Assisted Minimally Invasive Surgery. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2020.3037301

    View More
  • MobileFAN: Transferring Deep Hidden Representation for Face Alignment

    Zhao, Y., Liu, Y., Shen, C., Gao, Y., & Xiong, S. (2020). MobileFAN: Transferring deep hidden representation for face alignment. Pattern Recognition, 100, 107114. https://doi.org/10.1016/j.patcog.2019.107114

    View More
  • Deep Multiphase Level Set for Scene Parsing

    Zhang, P., Liu, W., Lei, Y., Wang, H., & Lu, H. (2020). Deep Multiphase Level Set for Scene Parsing. IEEE Transactions on Image Processing, 29, 4556–4567. https://doi.org/10.1109/TIP.2019.2957915

    View More
  • A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification

    Xie, Y., Zhang, J., Xia, Y., & Shen, C. (2020). A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification. IEEE Transactions on Medical Imaging, 39(7), 2482–2493. https://doi.org/10.1109/TMI.2020.2972964

    View More
  • Improving user specifications for robot behavior through active preference learning: Framework and evaluation

    Wilde, N., Blidaru, A., Smith, S. L., & Kulić, D. (2020). Improving user specifications for robot behavior through active preference learning: Framework and evaluation. The International Journal of Robotics Research, 39(6), 651–667. https://doi.org/10.1177/0278364920910802

    View More
  • Index Network

    Lu, H., Dai, Y., Shen, C., & Xu, S. (2019, August 11). Index network. ArXiv. https://doi.org/10.1109/tpami.2020.3004474

    View More
  • A Generalized Framework for Edge-preserving and Structure-preserving Image Smoothing

    Liu, W., Zhang, P., Huang, X., Yang, J., Shen, C., & Reid, I. (2019, July 22). A generalized framework for edge-preserving and structure-preserving image smoothing. ArXiv, Vol. 34, pp. 11620–11628. https://doi.org/10.1609/aaai.v34i07.6830

    View More
  • A Deep Journey into Super-resolution: A survey

    Anwar, S., Khan, S., & Barnes, N. (2020, June 1). A Deep Journey into Super-resolution: A Survey. ACM Computing Surveys, Vol. 53, pp. 1–34. https://doi.org/10.1145/3390462

    View More
  • Densely Residual Laplacian Super-Resolution

    Anwar, S., & Barnes, N. (2019, June 27). Densely Residual Laplacian Super-Resolution. ArXiv. https://doi.org/10.1109/tpami.2020.3021088

    View More
  • Component-based Attention for Large-scale Trademark Retrieval

    Tursun, O., Denman, S., Sivapalan, S., Sridharan, S., Fookes, C., & Mau, S. (2019). Component-based Attention for Large-scale Trademark Retrieval. IEEE Transactions on Information Forensics and Security. https://doi.org/10.1109/TIFS.2019.2959921

    View More
  • Towards Effective Deep Embedding for Zero-Shot Learning

    Zhang, L., Wang, P., Liu, L., Shen, C., Wei, W., Zhang, Y., & Van Den Hengel, A. (2020). Towards Effective Deep Embedding for Zero-Shot Learning. IEEE Transactions on Circuits and Systems for Video Technology, 30(9), 2843–2852. https://doi.org/10.1109/TCSVT.2020.2984666

    View More
  • Simultaneous compression and quantization: A joint approach for efficient unsupervised hashing

    Hoang, T., Do, T. T., Le, H., Le-Tan, D. K., & Cheung, N. M. (2020). Simultaneous compression and quantization: A joint approach for efficient unsupervised hashing. Computer Vision and Image Understanding, 191, 102852. https://doi.org/10.1016/j.cviu.2019.102852

    View More
  • Events, Event Prediction, and Predictive Processing

    Hohwy, J., Hebblewhite, A., & Drummond, T. (2020). Events, Event Prediction, and Predictive Processing. Topics in Cognitive Science, tops.12491. https://doi.org/10.1111/tops.12491

    View More
  • DGPose: Deep Generative Models for Human Body Analysis

    de Bem, R., Ghosh, A., Ajanthan, T., Miksik, O., Boukhayma, A., Siddharth, N., & Torr, P. (2020). DGPose: Deep Generative Models for Human Body Analysis. International Journal of Computer Vision, 128(5), 1537–1563.

    View More
  • Real-time Image Smoothing via Iterative Least Squares

    Liu, W., Zhang, P., Huang, X., Yang, J., Shen, C., & Reid, I. (2020). Real-time Image Smoothing via Iterative Least Squares. ACM Transactions on Graphics, 39(3), 1–24. https://doi.org/10.1145/3388887

    View More
  • OPMP: An Omni-directional Pyramid Mask Proposal Network for Arbitrary-shape Scene Text Detection

    Zhang, S., Liu, Y., Jin, L., Wei, Z., & Shen, C. (2020). OPMP: An Omni-directional Pyramid Mask Proposal Network for Arbitrary-shape Scene Text Detection. IEEE Transactions on Multimedia, 1–1. https://doi.org/10.1109/TMM.2020.2978630

    View More
  • MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking

    Dendorfer, P., Os̆ep, A., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S., & Leal-Taixé, L. (2021). MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking. International Journal of Computer Vision, 129(4), 845–881. https://doi.org/10.1007/s11263-020-01393-0

    View More
  • Multi-way backpropagation for training compact deep neural networks

    Guo, Y., Chen, J., Du, Q., Van Den Hengel, A., Shi, Q., & Tan, M. (2020). Multi-way backpropagation for training compact deep neural networks. Neural Networks, 126, 250–261. https://doi.org/10.1016/j.neunet.2020.03.001

    View More
  • A Dynamic Parameter Enhanced Network for distant supervised relation extraction

    Gou, Y., Lei, Y., Liu, L., Zhang, P., & Peng, X. (2020). A Dynamic Parameter Enhanced Network for distant supervised relation extraction. Knowledge-Based Systems, 197, 105912. https://doi.org/10.1016/j.knosys.2020.105912

    View More
  • Medical Data Inquiry Using a Question Answering Model

    Liao, Z., Liu, L., Wu, Q., Teney, D., Shen, C., van den Hengel, A., & Verjans, J. (2020). Medical Data Inquiry Using a Question Answering Model. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020-April, 1490–1493. https://doi.org/10.1109/ISBI45749.2020.9098531

    View More
  • Scripted Video Generation With a Bottom-Up Generative Adversarial Network

    Chen, Q., Wu, Q., Chen, J., Wu, Q., van den Hengel, A., & Tan, M. (2020). Scripted Video Generation With a Bottom-Up Generative Adversarial Network. IEEE Transactions on Image Processing, 29, 7454–7467. https://doi.org/10.1109/TIP.2020.3003227

    View More
  • Socially and Contextually Aware Human Motion and Pose Forecasting

    Adeli, V., Adeli, E., Reid, I., Niebles, J. C., & Rezatofighi, H. (2020). Socially and Contextually Aware Human Motion and Pose Forecasting. IEEE Robotics and Automation Letters, 5(4), 6033–6040. https://doi.org/10.1109/LRA.2020.3010742

    View More
  • GADE: A Generative Adversarial Approach to Density Estimation and its Applications.

    Abbasnejad, M. E., Shi, J., van den Hengel, A., & Liu, L. (2020). GADE: A Generative Adversarial Approach to Density Estimation and its Applications. International Journal of Computer Vision, 128(10–11), 2731–2743. https://doi.org/10.1007/s11263-020-01360-9

    View More
  • A Robust Attentional Framework for License Plate Recognition in the Wild

    Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., & Zhang, Y. (2020). A Robust Attentional Framework for License Plate Recognition in the Wild. IEEE Transactions on Intelligent Transportation Systems, 1–10. https://doi.org/10.1109/tits.2020.3000072

    View More
  • FCOS: A Simple and Strong Anchor-free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence

    Tian, Z., Shen, C., Chen, H., & He, T. (2020). FCOS: A Simple and Strong Anchor-free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3032166

    View More
  • Improving Generative Adversarial Networks with Local Coordinate Coding

    Cao, J., Guo, Y., Wu, Q., Shen, C., Huang, J., & Tan, M. (2020). Improving Generative Adversarial Networks with Local Coordinate Coding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3012096

    View More
  • Guided Co-Segmentation Network for Fast Video Object Segmentation

    Liu, W., Lin, G., Zhang, T., & Liu, Z. (2020). Guided Co-Segmentation Network for Fast Video Object Segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 1–1. https://doi.org/10.1109/tcsvt.2020.3010293

    View More
  • A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots

    Mao, J., Hu, X., Zhang, L., He, X., & Milford, M. (2020). A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 100(1), 289–310. https://doi.org/10.1007/s10846-020-01190-4

    View More
  • Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry

    Zhou, D., Dai, Y., & Li, H. (2020). Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry. IEEE Transactions on Intelligent Transportation Systems, 21(2), 791–802. https://doi.org/10.1109/TITS.2019.2900330

    View More
  • Memorable Maps: A Framework for Re-Defining Places in Visual Place Recognition

    Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. D. (2020). Memorable Maps: A Framework for Re-Defining Places in Visual Place Recognition. IEEE Transactions on Intelligent Transportation Systems, 1–15. https://doi.org/10.1109/tits.2020.3001228

    View More
  • A Review of Current Approaches for UAV Autonomous Mission Planning for Mars Biosignatures Detection.

    Serna, J. G., Vanegas, F., Gonzalez, F., & Flannery, D. (2020). A Review of Current Approaches for UAV Autonomous Mission Planning for Mars Biosignatures Detection. 1–15. https://doi.org/10.1109/aero47225.2020.9172467

    View More
  • A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded System on UAVs

    Mandel, Nicolas & Milford, Michael & Gonzalez, Felipe. (2020). A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded System on UAVs. Sensors. 20. 4420. 10.3390/s20164420.

    View More
  • JFR special issue on agricultural robotics, part 2

    Lehnert, C., McCool, C., Stachniss, C., Corke, P., Sa, I., Nieto, J., & Henten, E. J. (2020). JFR special issue on agricultural robotics, part 2. Journal of Field Robotics, 37(2), 185–186. https://doi.org/10.1002/rob.21939

    View More
  • Performance improvements of a sweet pepper harvesting robot in protected cropping environments

    Lehnert, C., McCool, C., Sa, I., & Perez, T. (2020). Performance improvements of a sweet pepper harvesting robot in protected cropping environments. Journal of Field Robotics, rob.21973. https://doi.org/10.1002/rob.21973

    View More
  • Special issue on agricultural robotics

    Lehnert, C., McCool, C., Corke, P., Sa, I., Stachniss, C., van Henten, E. J., & Nieto, J. (2020). Special issue on agricultural robotics. In Journal of Field Robotics (Vol. 37, Issue 1, pp. 5–6). John Wiley and Sons Inc. https://doi.org/10.1002/rob.21926

    View More
  • What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles

    Jacobson, A., Zeng, F., Smith, D., Boswell, N., Peynot, T., & Milford, M. (2020). What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles. Journal of Field Robotics, rob.21978. https://doi.org/10.1002/rob.21978

    View More
  • Self-Driving Vehicles: Key Technical Challenges and Progress off the Road

    Milford, M., Anthony, S., & Scheirer, W. (2020). Self-Driving Vehicles: Key Technical Challenges and Progress off the Road. IEEE Potentials, 39(1), 37–45. https://doi.org/10.1109/MPOT.2019.2939376

    View More
  • Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function

    Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function. Computer Vision and Image Understanding, 102989. https://doi.org/10.1016/j.cviu.2020.102989

    View More
  • Special Issue on Deep Learning for Robotic Vision

    Angelova, A., Carneiro, G., Sünderhauf, N., & Leitner, J. (2020, May 1). Special Issue on Deep Learning for Robotic Vision. International Journal of Computer Vision. https://doi.org/10.1007/s11263-020-01324-z

    View More
  • Haptics in Teleoperated Medical Interventions: Force Measurement, Haptic Interfaces and their Influence on User’s Performance

    Abdi, E., Kulic, D., & Croft, E. (2020). Haptics in teleoperated medical interventions: Force measurement, haptic interfaces and their influence on users performance. IEEE Transactions on Biomedical Engineering, 1–1. https://doi.org/10.1109/tbme.2020.2987603

    View More
  • Context from within: Hierarchical context modeling for semantic segmentation

    Nguyen, K., Fookes, C., & Sridharan, S. (2020). Context from within: Hierarchical context modeling for semantic segmentation. Pattern Recognition, 105, 107358. https://doi.org/10.1016/j.patcog.2020.107358

    View More
  • Neural Memory Plasticity for Medical Anomaly Detection

    Fernando, T., Denman, S., Ahmedt-Aristizabal, D., Sridharan, S., Laurens, K. R., Johnston, P., & Fookes, C. (2020). Neural memory plasticity for medical anomaly detection. Neural Networks, 127, 67–81. https://doi.org/10.1016/j.neunet.2020.04.011

    View More
  • Identification of Children At Risk of Schizophrenia via Deep Learning and EEG Responses

    Ahmedt Aristizabal, D., Fernando, T., Denman, S., Robinson, J. E., Sridharan, S., Johnston, P. J., Laurens, K.R., & Fookes, C. (2020). Identification of Children At Risk of Schizophrenia via Deep Learning and EEG Responses. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2020.2984238

    View More
  • Bio-inspired multi-scale fusion

    Hausler, S., Chen, Z., Hasselmo, M. E., & Milford, M. (2020). Bio-inspired multi-scale fusion. Biological Cybernetics, 114(2), 209–229. https://doi.org/10.1007/s00422-020-00831-z

    View More
  • Counting Objects by Blockwise Classification

    Liu, L., Lu, H., Xiong, H., Xian, K., Cao, Z., & Shen, C. (2020). Counting objects by blockwise classification. IEEE Transactions on Circuits and Systems for Video Technology, 30(10), 3513–3527. https://doi.org/10.1109/TCSVT.2019.2942970

    View More
  • Low-cost sensors as an alternative for long-term air quality monitoring

    Liu, X., Jayaratne, R., Thai, P., Kuhn, T., Zing, I., Christensen, B., Lamont, R., Dunbabin, M., Zhu, S., Gao, J., Wainwright, D., Neale, D., Kan, R., Kirkwood, J., & Morawska, L. (2020). Low-cost sensors as an alternative for long-term air quality monitoring. Environmental Research, 185, 109438. https://doi.org/10.1016/j.envres.2020.109438

    View More
  • High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks

    Pfister, F. M. J., Um, T. T., Pichler, D. C., Goschenhofer, J., Abedinpour, K., Lang, M., Endo, S., Ceballos-Baumann, A. O., Hirche, S., Bischl, B., Kulić, D., & Fietzek, U. M. (2020). High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks. Scientific Reports, 10(1), 5860. https://doi.org/10.1038/s41598-020-61789-3

    View More
  • Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy

    "Gustavo Carneiro, Leonardo Zorron Cheng Tao Pu, Rajvinder Singh, Alastair Burt,
    Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy,
    Medical Image Analysis,Volume 62,2020,101653,ISSN 1361-8415,https://doi.org/10.1016/j.media.2020.101653."

    View More
  • Learning Deep Gradient Descent Optimization for Image Deconvolution

    Gong, D., Zhang, Z., Shi, Q., Van Den Hengel, A., Shen, C., & Zhang, Y. (2020). Learning Deep Gradient Descent Optimization for Image Deconvolution. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5468–5482. https://doi.org/10.1109/TNNLS.2020.2968289

    View More
  • Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images

    Dunnhofer, M., Antico, M., Sasazawa, F., Takeda, Y., Camps, S., Martinel, N., Micheloni, C., Carneiro, G., & Fontanarosa, D. (2020). Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Medical Image Analysis, 60. https://doi.org/10.1016/j.media.2019.101631

    View More
  • Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization

    Hua, M. D., Trumpf, J., Hamel, T., Mahony, R., & Morin, P. (2020). Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization. Automatica, 115, 1–10.

    View More
  • Low-cost PM2. 5 Sensors: An Assessment of Their Suitability for Various Applications

    Jayaratne, R., Liu, X., Ahn, K.-H., Asumadu-Sakyi, A., Fisher, G., Gao, J., Mabon, A., Mazaheri, M., Mullins, B., Nyaku, M., Ristovki, Z., Scorgie, Y., Thai, P., Dunbabin, M., & Morawska, L. (2020). Low-cost PM 2.5 Sensors: An Assessment of their Suitability for Various Applications. Aerosol and Air Quality Research, 20, 520–532. https://doi.org/10.4209/aaqr.2018.10.0390

    View More
  • Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats

    Sekar, S., Panchal, S. K., Ghattamaneni, N. K., Brown, L., Crawford, R., Xiao, Y., & Prasadam, I. (2020). Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients, 12(2), 509. https://doi.org/10.3390/nu12020509

    View More
  • Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning

    Jonmohamadi, Y., Takeda, Y., Liu, F., Sasazawa, F., Maicas, G., Crawford, R., Roberts, J., Pandey, A.K., & Carneiro, G. (2020). Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning. IEEE Access, 1–1. https://doi.org/10.1109/access.2020.2980025

    View More
  • Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms

    Schaffter, T., Buist, D. S. M., Lee, C. I., Nikulin, Y., Ribli, D., Guan, Y., … Jung, H. (2020). Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 3(3), e200265. https://doi.org/10.1001/jamanetworkopen.2020.0265

    View More
  • LSTM guided ensemble correlation filter tracking with appearance model pool

    Jain, M., Subramanyam, A. V., Denman, S., Sridharan, S., & Fookes, C. (2020). LSTM guided ensemble correlation filter tracking with appearance model pool. Computer Vision and Image Understanding, 195, 102935. https://doi.org/10.1016/j.cviu.2020.102935

    View More
  • A Hybrid Compact Neural Architecture for Visual Place Recognition

    Chancan, M., Hernandez-Nunez, L., Narendra, A., Barron, A. B., & Milford, M. (2020). A Hybrid compact neural architecture for visual place recognition. IEEE Robotics and Automation Letters, 5(2), 993–1000. https://doi.org/10.1109/LRA.2020.2967324

    View More
  • Exploring Performance Bounds of Visual Place Recognition Using Extended Precision

    Ferrarini, B., Waheed, M., Waheed, S., Ehsan, S., Milford, M. J., & McDonald-Maier, K. D. (2020). Exploring performance bounds of visual place recognition using extended precision. IEEE Robotics and Automation Letters, 5(2), 1688–1695. https://doi.org/10.1109/LRA.2020.2969197

    View More
  • CoHOG: A Light-Weight, Compute-Efficient, and Training-Free Visual Place Recognition Technique for Changing Environments

    Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. (2020). CoHOG: A light-weight, compute-efficient, and training-free visual place recognition technique for changing environments. IEEE Robotics and Automation Letters, 5(2), 1835–1842. https://doi.org/10.1109/LRA.2020.2969917

    View More
  • Model-free vision-based shaping of deformable plastic materials

    Cherubini, A., Ortenzi, V., Cosgun, A., Lee, R., & Corke, P. (2020). Model-free vision-based shaping of deformable plastic materials. The International Journal of Robotics Research, 027836492090768. https://doi.org/10.1177/0278364920907684

    View More
  • Deep Clustering With Sample-Assignment Invariance Prior

    Peng, X., Zhu, H., Feng, J., Shen, C., Zhang, H., & Zhou, J. T. (2020). Deep Clustering with Sample-Assignment Invariance Prior. IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4857–4868. https://doi.org/10.1109/TNNLS.2019.2958324

    View More
  • Multiple Instance Learning with Emerging Novel Class

    Wei, X.-S., Ye, H.-J., Mu, X., Wu, J., Shen, C., & Zhou, Z.-H. (2019). Multiple Instance Learning with Emerging Novel Class. IEEE Transactions on Knowledge and Data Engineering, 1–1. https://doi.org/10.1109/tkde.2019.2952588

    View More
  • Joint Deep Learning of Facial Expression Synthesis and Recognition

    Yan, Y., Huang, Y., Chen, S., Shen, C., & Wang, H. (2020). Joint Deep Learning of Facial Expression Synthesis and Recognition. IEEE Transactions on Multimedia, 22(11), 2792–2807. https://doi.org/10.1109/TMM.2019.2962317

    View More
  • Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces

    Yu, X., Shiri, F., Ghanem, B., & Porikli, F. (2020). Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(9), 2148–2164. https://doi.org/10.1109/TPAMI.2019.2914039

    View More
  • Hierarchical Attention Network for Action Segmentation

    Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2020). Hierarchical Attention Network for Action Segmentation. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2020.01.023

    View More
  • Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach

    Park, C., Moghadam, P., Kim, S., Sridharan, S., & Fookes, C. (2020). Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach. IEEE Robotics and Automation Letters, 1–1. https://doi.org/10.1109/LRA.2020.2969164

    View More
  • Bacterial Profile, Multi-Drug Resistance and Seasonality Following Lower Limb Orthopaedic Surgery in Tropical and Subtropical Australian Hospitals: An Epidemiological Cohort Study

    Vickers, M. L., Ballard, E. L., Harris, P. N. A., Knibbs, L. D., Jaiprakash, A., Dulhunty, J. M., … Parkinson, B. (2020). Bacterial Profile, Multi-Drug Resistance and Seasonality Following Lower Limb Orthopaedic Surgery in Tropical and Subtropical Australian Hospitals: An Epidemiological Cohort Study. International Journal of Environmental Research and Public Health, 17(2), 657. https://doi.org/10.3390/ijerph17020657

    View More
  • Deep learning for US image quality assessment based on femoral cartilage boundaries detection in autonomous knee arthroscopy

    Antico, M., Fontanarosa, D., Carneiro, G., Vukovic, D., Camps, S. M., Sasazawa, F., … Crawford, R. (2020). Deep learning for US image quality assessment based on femoral cartilage boundaries detection in autonomous knee arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. https://doi.org/10.1109/TUFFC.2020.2965291

    View More
  • A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS

    Hinas, A., Ragel, R., Roberts, J., & Gonzalez, F. (2020). A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS. Sensors, 20(1), 272. https://doi.org/10.3390/s20010272

    View More
  • Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control

    Molloy, T. L., Inga, J., Flad, M., Ford, J. J., Perez, T., & Hohmann, S. (2020). Inverse open-loop noncooperative differential games and inverse optimal control. IEEE Transactions on Automatic Control, 65(2), 897–904. https://doi.org/10.1109/TAC.2019.2921835

    View More
  • An Update on Retinal Prostheses

    Ayton, L. N., Barnes, N., Dagnelie, G., Fujikado, T., Goetz, G., Hornig, R., Jones, B. W., Muqit, M. M. K., Rathbun, D. L., Stingl, K., Weiland, J. D., & Petoe, M. A. (2020). An update on retinal prostheses. In Clinical Neurophysiology (Vol. 131, Issue 6, pp. 1383–1398). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2019.11.029

    View More
  • Correlation-aware Adversarial Domain Adaptation and Generalization

    Rahman, M. M., Fookes, C., Baktashmotlagh, M., & Sridharan, S. (2019). Correlation-aware Adversarial Domain Adaptation and Generalization. Pattern Recognition, 107124. https://doi.org/10.1016/j.patcog.2019.107124

    View More
  • Heart Sound Segmentation using Bidirectional LSTMs with Attention

    Fernando, T., Ghaemmaghami, H., Denman, S., Sridharan, S., Hussain, N., & Fookes, C. (2020). Heart Sound Segmentation Using Bidirectional LSTMs with Attention. IEEE Journal of Biomedical and Health Informatics, 24(6), 1601–1609. https://doi.org/10.1109/JBHI.2019.2949516

    View More
  • REFUGE Challenge: A Unified Framework for Evaluating Automated Methods for Glaucoma Assessment from Fundus Photographs

    Orlando, J. I., Fu, H., Barbossa Breda, J., van Keer, K., Bathula, D. R., Diaz-Pinto, A., Fang, R., Heng, P-A., Kim, J., Lee, J., Lee, J., Li, X., Liu, P., Lu, S., Murugesan, B., Naranjo, V., Phaye, S S R., Shankaranarayana, S., Sikka, A., Son,J., van den Hengel, A., Wang, S., Wu, J., Wu, Z., Xu, G., Xu, Y., Yin, P., Li, F., Zhang, X., Yanwu, X., Bogunović, H. (2020). REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis, 59, 101570. https://doi.org/10.1016/j.media.2019.101570

    View More
  • A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold

    Gao, Z., Wu, Y., Harandi, M., & Jia, Y. (2020). A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3230–3244. https://doi.org/10.1109/TNNLS.2019.2939177

    View More
  • One shot segmentation: unifying rigid detection and non-rigid segmentation using elastic regularization

    Nascimento, J. C., & Carneiro, G. (2020). One Shot Segmentation: Unifying Rigid Detection and Non-Rigid Segmentation Using Elastic Regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12), 3054–3070. https://doi.org/10.1109/TPAMI.2019.2922959

    View More
  • Learning Distilled Graph for Large-scale Social Network Data Clusterin

    Liu, W., Gong, D., Tan, M., Shi, Q., Yang, Y., & Hauptmann, A. G. (2019). Learning Distilled Graph for Large-scale Social Network Data Clustering. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2019.2904068

    View More

Conference Papers

  • Why are Generative Adversarial Networks so Fascinating and Annoying?

    Faria, F. A., & Carneiro, G. (2020). Why are Generative Adversarial Networks so Fascinating and Annoying? Proceedings - 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020, 1–8. https://doi.org/10.1109/SIBGRAPI51738.2020.00009

    View More
  • Learning Object Relation Graph and Tentative Policy for Visual Navigation

    Du H., Yu X., Zheng L. (2020) Learning Object Relation Graph and Tentative Policy for Visual Navigation. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_2

    View More
  • Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path

    Deremetz, M., Lenain, R., Laneurit, J., Debain, C., & Peynot, T. (2020). Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path. CCTA 2020 - 4th IEEE Conference on Control Technology and Applications, 372–379. https://doi.org/10.1109/CCTA41146.2020.9206153

    View More
  • Shonan Rotation Averaging: Global Optimality by Surfing SO(p)n

    Dellaert F., Rosen D.M., Wu J., Mahony R., Carlone L. (2020) Shonan Rotation Averaging: Global Optimality by Surfing SO(p)n. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_18

    View More
  • A robotic vision system for inspection of soiling at CSP plants

    Coventry, J., Asselineau, C. A., Salahat, E., Raman, M. A., & Mahony, R. (2020). A robotic vision system for inspection of soiling at CSP plants. AIP Conference Proceedings, 2303(1), 100001. https://doi.org/10.1063/5.0029493

    View More
  • Towards a Multimodal System combining Augmented Reality and Electromyography for Robot Trajectory Programming and Execution

    Chan, W. P., Sakr, M., Quintero, C. P., Croft, E., & Van Der Loos, H. F. M. H. (2020). Towards a Multimodal System combining Augmented Reality and Electromyography for Robot Trajectory Programming and Execution. 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, 419–424. https://doi.org/10.1109/RO-MAN47096.2020.9223526

    View More
  • Solving the Blind Perspective-n-Point Problem End-to-End with Robust Differentiable Geometric Optimization

    Campbell D., Liu L., Gould S. (2020) Solving the Blind Perspective-n-Point Problem End-to-End with Robust Differentiable Geometric Optimization. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_15

    View More
  • A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps

    Cagara, D., Dunbabin, M., & Rigby, P. (2020). A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps. Proceedings - IEEE International Conference on Robotics and Automation, 8573–8579. https://doi.org/10.1109/ICRA40945.2020.9196680

    View More
  • Neural Memory Networks for Seizure Type Classification

    Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Petersson, L., Aburn, M. J., & Fookes, C. (2020). Neural Memory Networks for Seizure Type Classification. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 569–575. https://doi.org/10.1109/EMBC44109.2020.9175641

    View More
  • Attention Networks for Multi-Task Signal Analysis

    Ahmedt-Aristizabal, D., Armin, M. A., Denman, S., Fookes, C., & Petersson, L. (2020). Attention Networks for Multi-Task Signal Analysis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 184–187. https://doi.org/10.1109/EMBC44109.2020.9175730

    View More
  • Memory-Efficient Hierarchical Neural Architecture Search for Image Denoising

    Zhang, H., Li, Y., Chen, H., & Shen, C. (2020). Memory-efficient hierarchical neural architecture search for image denoising. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3654–3663. https://doi.org/10.1109/CVPR42600.2020.00371

    View More
  • Visual Odometry Revisited: What Should Be Learnt?

    Zhan, H., Weerasekera, C. S., Bian, J. W., & Reid, I. (2020). Visual Odometry Revisited: What Should Be Learnt? Proceedings - IEEE International Conference on Robotics and Automation, 4203–4210. https://doi.org/10.1109/ICRA40945.2020.9197374

    View More
  • PolarMask: Single Shot Instance Segmentation with Polar Representation

    Xie, E., Sun, P., Song, X., Wang, W., Liu, X., Liang, D., Shen, C., & Luo, P. (2020). PolarMask: Single shot instance segmentation with polar representation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12190–12199. https://doi.org/10.1109/CVPR42600.2020.01221

    View More
  • SOLO: Segmenting Objects by Locations

    Wang X., Kong T., Shen C., Jiang Y., Li L. (2020) SOLO: Segmenting Objects by Locations. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_38

    View More
  • Optimal Feature Transport for Cross-View Image Geo-Localization

    Shi, Y., Yu, X., Liu, L., Zhang, T., & Li, H. (2020). Optimal Feature Transport for Cross-View Image Geo-Localization. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 11990-11997. https://doi.org/10.1609/aaai.v34i07.6875

    View More
  • Uncertainty in Model-Agnostic Meta-Learning using Variational Inference

    Nguyen, C., Do, T. T., & Carneiro, G. (2020). Uncertainty in model-agnostic meta-learning using variational inference. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 3079–3089. https://doi.org/10.1109/WACV45572.2020.9093536

    View More
  • Unsupervised Task Design to Meta-Train Medical Image Classifiers

    Maicas, G., Nguyen, C., Motlagh, F., Nascimento, J. C., & Carneiro, G. (2020). Unsupervised Task Design to Meta-Train Medical Image Classifiers. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1339–1342. https://doi.org/10.1109/ISBI45749.2020.9098470

    View More
  • Photoshopping Colonoscopy Video Frames

    Liu, Y., Tian, Y., Maicas, G., Cheng Tao Pu, L. Z., Singh, R., Verjans, J. W., & Carneiro, G. (2020). Photoshopping Colonoscopy Video Frames. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1642–1646. https://doi.org/10.1109/ISBI45749.2020.9098406

    View More
  • Word-level Deep Sign Language Recognition from Video: A New Large-scale Dataset and Methods Comparison

    Li, D., Opazo, C. R., Yu, X., & Li, H. (2020). Word-level deep sign language recognition from video: A new large-scale dataset and methods comparison. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1448–1458. https://doi.org/10.1109/WACV45572.2020.9093512

    View More
  • Semi-supervised Multi-domain Multi-task Training for Metastatic Colon Lymph Node Diagnosis From Abdominal CT

    Glaser, S., Maicas, G., Bedrikovetski, S., Sammour, T., & Carneiro, G. (2020). Semi-Supervised Multi-Domain Multi-Task Training for Metastatic Colon Lymph Node Diagnosis from Abdominal CT. Proceedings - International Symposium on Biomedical Imaging, 2020-April, 1478–1481. https://doi.org/10.1109/ISBI45749.2020.9098372

    View More
  • End-to-End Learnable Geometric Vision by Backpropagating PnP Optimization

    Chen, B., Parra, Á., Cao, J., Li, N., & Chin, T. J. (2020). End-to-end learnable geometric vision by backpropagating PNP optimization. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8097–8106. https://doi.org/10.1109/CVPR42600.2020.00812

    View More
  • CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning

    Chancan, M., & Milford, M. (2020). CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning. Proceedings - IEEE International Conference on Robotics and Automation, 1697–1704. https://doi.org/10.1109/ICRA40945.2020.9197336

    View More
  • Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraint

    Ch’ng, S. F., Sogi, N., Purkait, P., Chin, T. J., & Fukui, K. (2020). Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraints∗. Proceedings - IEEE International Conference on Robotics and Automation, 9680–9686. https://doi.org/10.1109/ICRA40945.2020.9196902

    View More
  • Dynamic SLAM: The Need For Speed

    Henein, M., Zhang, J., Mahony, R., & Ila, V. (2020). Dynamic SLAM: The Need For Speed. Proceedings - IEEE International Conference on Robotics and Automation, 2123–2129. http://arxiv.org/abs/2002.08584

    View More
  • LyRN (Lyapunov Reaching Network): A Real-Time Closed Loop approach from Monocular Vision

    Zhuang, Z., Yu, X., & Mahony, R. (2020). LyRN (Lyapunov Reaching Network): A Real-Time Closed Loop approach from Monocular Vision. Proceedings - IEEE International Conference on Robotics and Automation, 8331–8337. http://arxiv.org/abs/2005.12072

    View More
  • UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders

    Zhang, J., Fan, D. P., Dai, Y., Anwar, S., Saleh, F. S., Zhang, T., & Barnes, N. (2020). UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8579–8588. https://doi.org/10.1109/CVPR42600.2020.00861

    View More
  • Random Erasing Data Augmentation

    Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). Random Erasing Data Augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 13001–13008.

    View More
  • Correlating edge, pose with parsing

    Zhang, Z., Su, C., Zheng, L., & Xie, X. (2020). Correlating edge, pose with parsing. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8897–8906. https://doi.org/10.1109/CVPR42600.2020.00892

    View More
  • Deblurring by Realistic Blurring

    Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. (2020). Deblurring by Realistic Blurring. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2734–2743. https://doi.org/10.1109/CVPR42600.2020.00281

    View More
  • Mosaic super-resolution via sequential feature pyramid networks

    Shoeiby, M., Armin, M. A., Aliakbarian, S., Anwar, S., & Petersson, L. (2020). Mosaic super-resolution via sequential feature pyramid networks. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 378–387. https://doi.org/10.1109/CVPRW50498.2020.00050

    View More
  • Transductive zero-shot learning for 3D point cloud classification

    Cheraghian, A., Rahman, S., Campbell, D., & Petersson, L. (2020). Transductive zero-shot learning for 3D point cloud classification. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 912–922. https://doi.org/10.1109/WACV45572.2020.9093545

    View More
  • Learning User Preferences from Corrections on State Lattices

    Wilde, N., Kulic, D., & Smith, S. L. (2020). Learning User Preferences from Corrections on State Lattices. Proceedings - IEEE International Conference on Robotics and Automation, 4913–4919. https://doi.org/10.1109/ICRA40945.2020.9197040

    View More
  • Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching

    Shi, Y., Yu, X., Campbell, D., & Li, H. (2020). Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR 2020

    View More
  • Inferring Temporal Compositions of Actions Using Probabilistic Automata

    Cruz, R. S., Cherian, A., Fernando, B., Campbell, D., & Gould, S. (2020). Inferring temporal compositions of actions using probabilistic automata. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 1514–1522. https://doi.org/10.1109/CVPRW50498.2020.00192

    View More
  • Transferring Cross-domain Knowledge for Video Sign Language Recognition

    Li, D., Yu, X., Xu, C., Petersson, L., & Li, H. (2020). Transferring Cross-domain Knowledge for Video Sign Language Recognition, CVPR 2020

    View More
  • EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency

    Faisal, M., Akhter, I., Ali, M., & Hartley, R. (2020). EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1873–1882. https://doi.org/10.1109/WACV45572.2020.9093589

    View More
  • Learning to Structure an Image with Few Colors

    Hou, Y., Zheng, L., & Gould, S. (2020). Learning to Structure an Image with Few Colors, CVPR 2020

    View More
  • Joint 3D Instance Segmentation and Object Detection for Autonomous Driving

    Zhou, D., Fang, J., Song, X., Liu, L., Yin, J., Dai, Y., Li, H., & Yang, R. (2020). Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1839–1849.

    View More
  • Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection

    Pang, G., Yan, C., Shen, C., van den Hengel, A., & Bai, X. (2020). Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12170–12179. https://doi.org/10.1109/CVPR42600.2020.01219

    View More
  • DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers

    Zhang, C., Cai, Y., Lin, G., & Shen, C. (2020). DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12200–12210. https://doi.org/10.1109/CVPR42600.2020.01222

    View More
  • Mask Encoding for Single Shot Instance Segmentation

    Zhang, R., Tian, Z., Shen, C., You, M., & Yan, Y. (2020). Mask Encoding for Single Shot Instance Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 10223–10232. https://doi.org/10.1109/CVPR42600.2020.01024

    View More
  • Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume

    Johnston, A., & Carneiro, G. (2020). Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4755–4764. https://doi.org/10.1109/CVPR42600.2020.00481

    View More
  • Context Prior for Scene Segmentation

    Yu, C., Wang, J., Gao, C., Yu, G., Shen, C., & Sang, N. (2020). Context prior for scene segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12413–12422. https://doi.org/10.1109/CVPR42600.2020.01243

    View More
  • Anomaly Detection via Neighbourhood Contrast. Lecture Notes in Computer Science

    Chen B., Ting K.M., Chin TJ. (2020) Anomaly Detection via Neighbourhood Contrast. In: Lauw H., Wong RW., Ntoulas A., Lim EP., Ng SK., Pan S. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2020. Lecture Notes in Computer Science, vol 12085. Springer, Cham. https://doi.org/10.1007/978-3-030-47436-2_49

    View More
  • Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos

    Ehsanpour M., Abedin A., Saleh F., Shi J., Reid I., Rezatofighi H. (2020) Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_11

    View More
  • Architecture search of dynamic cells for semantic video segmentation

    Nekrasov, V., Chen, H., Shen, C., & Reid, I. (2020). Architecture search of dynamic cells for semantic video segmentation. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1959–1968. https://doi.org/10.1109/WACV45572.2020.9093531

    View More
  • Reverie: Remote embodied visual referring expression in real indoor environments

    Qi, Y., Wu, Q., Anderson, P., Wang, X., Wang, W. Y., Shen, C., & Van Den Hengel, A. (2020). Reverie: Remote embodied visual referring expression in real indoor environments. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 9979–9988. https://doi.org/10.1109/CVPR42600.2020.01000

    View More
  • Training quantized neural networks with a full-precision auxiliary module

    Zhuang, B., Liu, L., Tan, M., Shen, C., & Reid, I. (2020). Training quantized neural networks with a full-precision auxiliary module. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1485–1494. https://doi.org/10.1109/CVPR42600.2020.00156

    View More
  • Towards Simulating Semantic Onboard UAV Navigation

    Mandel, N., Alvarez, F. V., Milford, M., & Gonzalez, F. (2020, March 1). Towards Simulating Semantic Onboard UAV Navigation. IEEE Aerospace Conference Proceedings. https://doi.org/10.1109/AERO47225.2020.9172771

    View More
  • Fast postprocessing for difficult discrete energy minimization problems

    Akhter, I., Cheong, L. F., & Hartley, R. (2020). Fast postprocessing for difficult discrete energy minimization problems. In Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020 (pp. 3462–3471).

    View More
  • A Stochastic Conditioning Scheme for Diverse Human Motion Prediction

    Aliakbarian, S., Sadat, F., †1, S., Salzmann, M., Petersson, L., & Gould, S. (2020). A Stochastic Conditioning Scheme for Diverse Human Motion Prediction *. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5223–5232).

    View More
  • Blended convolution and synthesis for efficient discrimination of 3D shapes

    Ramasinghe, S., Khan, S., Barnes, N., & Gould, S. (2020). Blended convolution and synthesis for efficient discrimination of 3D shapes. In Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020 (pp. 21–31).

    View More
  • Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution

    Song, X., Dai, Y., Zhou, D., Liu, L., Li, W., Li, H., & Yang, R. (2020). Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

    View More
  • Geometry to the Rescue : 3D Instance Reconstruction from a Cluttered Scene

    Li, L., & Barnes, N. (2020). Geometry to the Rescue : 3D Instance Reconstruction from a Cluttered Scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

    View More
  • Proposal-free temporal moment localization of a natural-language query in video using guided attention

    Rodriguez-Opazo, C., Marrese-Taylor, E., Saleh, F. S., Li, H., & Gould, S. (2020). Proposal-free temporal moment localization of a natural-language query in video using guided attention. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 2453–2462. https://doi.org/10.1109/WACV45572.2020.9093328

    View More
  • Robust Ego and Object 6-DoF Motion Estimation and Tracking

    Zhang, J., Henein, M., Mahony, R., & Viorela, I. (2020). Robust Ego and Object 6-DoF Motion Estimation and Tracking. IROS 2020.

    View More
  • Cost Volume Pyramid Based Depth Inference for Multi-View Stereo

    Yang, J., Mao, W., Alvarez, J. M., & Liu, M. (2020). Cost volume pyramid based depth inference for multi-view stereo. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4876–4885. https://doi.org/10.1109/CVPR42600.2020.00493

    View More
  • From Depth What Can You See? Depth Completion via Auxiliary Image Reconstruction

    Lu, K., Barnes, N., Anwar, S., & Zheng, L. (2020). From depth what can you see? Depth completion via auxiliary image reconstruction. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 11303–11312. https://doi.org/10.1109/CVPR42600.2020.01132

    View More
  • Learning Landmark Guided Embeddings for Animal Re-identification

    Moskvyak, O., Maire, F., Dayoub, F., & Baktashmotlagh, M. (2020). Learning Landmark Guided Embeddings for Animal Re-identification. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision Workshops, WACVW 2020, 12–19. https://doi.org/10.1109/WACVW50321.2020.9096932

    View More
  • Probabilistic object detection: Definition and evaluation

    Hall, D., Dayoub, F., Skinner, J., Zhang, H., Miller, D., Corke, P., Carneiro, G., Angelova, A., & Sunderhauf, N. (2020). Probabilistic object detection: Definition and evaluation. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1020–1029. https://doi.org/10.1109/WACV45572.2020.9093599

    View More
  • Autonomous UAV Navigation for Active Perception of Targets in Uncertain and Cluttered Environments

    Sandino, J., Vanegas, F., Gonzalez, F., & Maire, F. (2020). Autonomous UAV Navigation for active perception of targets in uncertain and cluttered environments. Proceedings of 2020 IEEE Aerospace Conference.

    View More
  • Attention Driven Fusion for Multi-Modal Emotion Recognition

    Priyasad, D., Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020, April 9). Attention Driven Fusion for Multi-Modal Emotion Recognition. 3227–3231. https://doi.org/10.1109/icassp40776.2020.9054441

    View More
  • DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares

    Ben-Shabat Y., Gould S. (2020) DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_2

    View More
  • On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering

    Wang, X., Liu, Y., Shen, C., Ng, C. C., Luo, C., Jin, L., Chan, C. S., van den Hengel, A., & Wang, L. (2020). On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering. Retrieved from http://arxiv.org/abs/2002.10215

    View More
  • BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation

    Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., & Yan, Y. (2020). Blendmask: Top-down meets bottom-up for instance segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8570–8578. https://doi.org/10.1109/CVPR42600.2020.00860

    View More
  • Fast Image Reconstruction with an Event Camera

    Scheerlinck, C., Rebecq, H., Gehrig, D., Barnes, N., Mahony, R. E., & Scaramuzza, D. (2020). Fast Image Reconstruction with an Event Camera. Retrieved from https://github.com/uzh-rpg/rpg

    View More
  • OpenGAN: Open Set Generative Adversarial Networks

    Ditria L., Meyer B.J., Drummond T. (2021) OpenGAN: Open Set Generative Adversarial Networks. In: Ishikawa H., Liu CL., Pajdla T., Shi J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science, vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_29

    View More
  • Semantic Consistency and Identity Mapping Multi-Component Generative Adversarial Network for Person Re-Identification

    Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Semantic Consistency and Identity Mapping Multi-Component Generative Adversarial Network for Person Re-Identification.

    View More
  • Joint Stereo Video Deblurring, Scene Flow Estimation and Moving Object Segmentation

    Pan, L., Dai, Y., Liu, M., Porikli, F., & Pan, Q. (2020). Joint stereo video deblurring, scene flow estimation and moving object segmentation. IEEE Transactions on Image Processing, 29, 1748–1761. https://doi.org/10.1109/TIP.2019.2945867

    View More
  • V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices

    Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., & van den Hengel, A. (2020). V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 12071-12078. https://doi.org/10.1609/aaai.v34i07.6885

    View More
  • Model-free Tracker for Multiple Objects Using Joint Appearance and Motion Inference

    Liu, C., Yao, R., Rezatofighi, S. H., Reid, I., & Shi, Q. (2020). Model-Free Tracker for Multiple Objects Using Joint Appearance and Motion Inference. IEEE Transactions on Image Processing, 29, 277–288. https://doi.org/10.1109/TIP.2019.2928123

    View More
  • Architecture Search of Dynamic Cells for Semantic Video Segmentation

    Nekrasov, V., Chen, H., Shen, C., & Reid, I. (2020). Architecture Search of Dynamic Cells for Semantic Video Segmentation.

    View More
  • Template-Based Automatic Search of Compact Semantic Segmentation Architectures

    Nekrasov, V., Shen, C., & Reid, I. (2020). Template-Based Automatic Search of Compact Semantic Segmentation Architectures.

    View More

Edited Collection

  • Events and Machine Learning

    Hebblewhite, A., Hohwy, J., & Drummond, T. (2020). Events and Machine Learning. Topics in Cognitive Science, tops.12520. https://doi.org/10.1111/tops.12520

    View More
  • Guest Editorial: Special Issue on ACCV 2018

    Jawahar, C. V., Li, H., Mori, G., & Schindler, K. (2020). Guest Editorial: Special Issue on ACCV 2018. International Journal of Computer Vision, 128(4), 909.

    View More

Submitted

  • Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks

    Rahimi, A., Shaban, A., Cheng, C.-A., Hartley, R., & Boots, B. (2020). Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks. http://arxiv.org/abs/2003.06820

    View More
  • Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization

    Rahimi, A., Shaban, A., Ajanthan, T., Hartley, R., & Boots, B. (2020). Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization. http://arxiv.org/abs/2003.08375

    View More
  • Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point Problem

    Liu, L., Campbell, D., Li, H., Zhou, D., Song, X., & Yang, R. (2020). Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point Problem. ArXiv. http://arxiv.org/abs/2003.06752

    View More
  • Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level Optimization

    Jiang, S., Campbell, D., Liu, M., Gould, S., & Hartley, R. (2020). Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level Optimization. ArXiv. http://arxiv.org/abs/2002.11826

    View More
  • Sub-Instruction Aware Vision-and-Language Navigation

    Hong, Y., Rodriguez-Opazo, C., Wu, Q., & Gould, S. (2020). Sub-Instruction Aware Vision-and-Language Navigation. ArXiv. http://arxiv.org/abs/2004.02707

    View More
  • ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking

    Saleh, F., Aliakbarian, S., Salzmann, M., & Gould, S. (2020). ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking. http://arxiv.org/abs/2004.07482

    View More
  • An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance

    van Goor, P., Mahony, R., Hamel, T., & Trumpf, J. (2020). An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance. ArXiv. http://arxiv.org/abs/2005.14347

    View More
  • A Minimum Energy Filter for Localisation of an Unmanned Aerial Vehicle

    Henderson, J., Zamani, M., Mahony, R., & Trumpf, J. (2020). A Minimum Energy Filter for Localisation of an Unmanned Aerial Vehicle. http://arxiv.org/abs/2009.04630

    View More
  • Accuracy vs. Complexity: A Trade-off in Visual Question Answering Models

    Farazi, M. R., Khan, S. H., & Barnes, N. (2020). Accuracy vs. Complexity: A Trade-off in Visual Question Answering Models. ArXiv. http://arxiv.org/abs/2001.07059

    View More
  • Bidirectional Self-Normalizing Neural Networks

    Lu, Y., Gould, S., & Ajanthan, T. (2020). Bidirectional Self-Normalizing Neural Networks. http://arxiv.org/abs/2006.12169

    View More
  • Calibration of Neural Networks using Splines

    Gupta, K., Rahimi, A., Ajanthan, T., Mensink, T., Sminchisescu, C., & Hartley, R. (2020). Calibration of Neural Networks using Splines. http://arxiv.org/abs/2006.12800

    View More
  • Reducing the Sim-to-Real Gap for Event Cameras

    Stoffregen, T., Scheerlinck, C., Scaramuzza, D., Drummond, T., Barnes, N., Kleeman, L., & Mahony, R. (2020). Reducing the Sim-to-Real Gap for Event Cameras. http://arxiv.org/abs/2003.09078

    View More
  • Hierarchical Neural Architecture Search for Deep Stereo Matching

    Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Drummond, T., Li, H., & Ge, Z. (2020). Hierarchical Neural Architecture Search for Deep Stereo Matching. http://arxiv.org/abs/2010.13501

    View More
  • Bridge the Domain Gap Between Ultra-wide-field and Traditional Fundus Images via Adversarial Domain Adaptation

    Ju, L., Wang, X., Zhou, Q., Zhu, H., Harandi, M., Bonnington, P., Drummond, T., & Ge, Z. (2020). Bridge the Domain Gap Between Ultra-wide-field and Traditional Fundus Images via Adversarial Domain Adaptation. ArXiv. http://arxiv.org/abs/2003.10042

    View More
  • Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular camera for holistic trajectory planning

    Loukkal, A., Grandvalet, Y., Drummond, T., & Li, Y. (2020). Driving among Flatmobiles: Bird-Eye-View occupancy grids from a monocular camera for holistic trajectory planning. http://arxiv.org/abs/2008.04047

    View More
  • Automatic Pruning for Quantized Neural Networks

    Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Automatic Pruning for Quantized Neural Networks. Retrieved from http://arxiv.org/abs/2002.00523

    View More
  • Residual Likelihood Forests

    Zuo, Y., & Drummond, T. (2020). Residual Likelihood Forests. http://arxiv.org/abs/2011.02086

    View More
  • A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews

    Marrese-Taylor, E., Rodriguez-Opazo, C., Balazs, J. A., Gould, S., & Matsuo, Y. (2020). A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews. ACL 2020

    View More
  • DPDist : Comparing Point Clouds Using Deep Point Cloud Distance

    Urbach, D., Ben-Shabat, Y., & Lindenbaum, M. (2020). DPDist : Comparing Point Clouds Using Deep Point Cloud Distance.

    View More
  • Equivariant Filter Design for Kinematic Systems on Lie Groups

    Mahony, R., & Trumpf, J. (2020). Equivariant Filter Design for Kinematic Systems on Lie Groups. http://arxiv.org/abs/2004.00828

    View More
  • Equivariant Systems Theory and Observer Design

    Mahony, R., Hamel, T., & Trumpf, J. (2020). Equivariant Systems Theory and Observer Design. http://arxiv.org/abs/2006.08276

    View More
  • Few-shot Action Recognition with Permutation-invariant Attention

    Zhang, H., Zhang, L., Qi, X., Li, H., Torr, P. H. S., & Koniusz, P. (2020). Few-shot Action Recognition with Permutation-invariant Attention. 525–542. http://arxiv.org/abs/2001.03905

    View More
  • Improved Gradient based Adversarial Attacks for Quantized Networks

    Gupta, K., & Ajanthan, T. (2020). Improved Gradient based Adversarial Attacks for Quantized Networks. ArXiv. http://arxiv.org/abs/2003.13511

    View More
  • Post-hoc Calibration of Neural Networks

    Rahimi, A., Gupta, K., Ajanthan, T., Mensink, T., Sminchisescu, C., & Hartley, R. (2020). Post-hoc Calibration of Neural Networks. http://arxiv.org/abs/2006.12807

    View More
  • Localising In Complex Scenes Using Balanced Adversarial Adaptation

    Avraham, G., Zuo, Y., & Drummond, T. (2020). Localising In Complex Scenes Using Balanced Adversarial Adaptation. http://arxiv.org/abs/2011.04122

    View More
  • Joint Estimation of Expertise and Reward Preferences From Human Demonstrations

    Carreno-Medrano, P., Smith, S. L., & Kulic, D. (2020). Joint Estimation of Expertise and Reward Preferences From Human Demonstrations. http://arxiv.org/abs/2011.04118

    View More
  • Conditional Convolutions for Instance Segmentation

    Tian, Z., Shen, C., & Chen, H. (2020). Conditional Convolutions for Instance Segmentation. http://arxiv.org/abs/2003.05664

    View More
  • MOT20: A benchmark for multi object tracking in crowded scenes

    Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixé, L. (2020). MOT20: A benchmark for multi object tracking in crowded scenes. ArXiv. http://arxiv.org/abs/2003.09003

    View More
  • Topological Sweep for Multi-Target Detection of Geostationary Space Objects

    Liu, D., Chen, B., Chin, T.-J., & Rutten, M. (2020). Topological Sweep for Multi-Target Detection of Geostationary Space Objects. http://arxiv.org/abs/2003.09583

    View More
  • Topological Sweep for Multi-Target Detection of Geostationary Space Objects

    Liu, D., Chen, B., Chin, T.-J., & Rutten, M. (2020). Topological Sweep for Multi-Target Detection of Geostationary Space Objects. http://arxiv.org/abs/2003.09583

    View More
  • SOLOv2: Dynamic, Faster and Stronger

    Wang, X., Zhang, R., Kong, T., Li, L., & Shen, C. (2020). SOLOv2: Dynamic, Faster and Stronger. http://arxiv.org/abs/2003.10152

    View More
  • BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation

    Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., & Sang, N. (2020). BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation. http://arxiv.org/abs/2004.02147

    View More
  • Role-Wise Data Augmentation for Knowledge Distillation

    Fu, J., Geng, X., Duan, Z., Zhuang, B., Yuan, X., Trischler, A., Lin, J., Pal, C., & Dong, H. (2020). Role-Wise Data Augmentation for Knowledge Distillation. https://github.com/bigaidream-projects/role-kd

    View More
  • Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision

    Teney, D., Abbasnedjad, E., & Hengel, A. van den. (2020). Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision. http://arxiv.org/abs/2004.09034

    View More
  • Structured Multimodal Attentions for TextVQA

    Gao, C., Zhu, Q., Wang, P., Li, H., Liu, Y., Hengel, A. van den, & Wu, Q. (2020). Structured Multimodal Attentions for TextVQA. http://arxiv.org/abs/2006.00753

    View More
  • Monotone Boolean Functions, Feasibility/Infeasibility, LP-type problems and MaxCon

    Suter, D., Tennakoon, R., Zhang, E., Chin, T.-J., & Bab-Hadiashar, A. (2020). Monotone Boolean Functions, Feasibility/Infeasibility, LP-type problems and MaxCon. http://arxiv.org/abs/2005.05490

    View More
  • Scene Text Image Super-Resolution in the Wild

    Wang, W., Xie, E., Liu, X., Wang, W., Liang, D., Shen, C., & Bai, X. (2020). Scene Text Image Super-Resolution in the Wild. http://arxiv.org/abs/2005.03341

    View More
  • Scope Head for Accurate L ocalization in Object Detection

    Zhan, G., Xu, D., Lu, G., Wu, W., Shen, C., & Ouyang, W. (2020).Scope Head for Accurate L ocalization in Object Detection. http://arxiv.org/abs/2005.04854

    View More
  • Visual Question Answering with Prior Class Semantics

    Shevchenko, V., Teney, D., Dick, A., & Hengel, A. van den. (2020). Visual Question Answering with Prior Class Semantics. Retrieved from http://arxiv.org/abs/2005.01239

    View More
  • On the Value of Out-of-Distribution Testing: An Example of Goodhart’s Law

    Teney, D., Kafle, K., Shrestha, R., Abbasnejad, E., Kanan, C., & Hengel, A. van den. (2020). On the Value of Out-of-Distribution Testing: An Example of Goodhart’s Law. Retrieved from http://arxiv.org/abs/2005.09241

    View More
  • Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue

    Bian, J.-W., Zhan, H., Wang, N., Chin, T.-J., Shen, C., & Reid, I. (2020). Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue. Retrieved from http://arxiv.org/abs/2006.02708

    View More
  • Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification

    Hermoza, R., Maicas, G., Nascimento, J. C., & Carneiro, G. (2020). Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification. Retrieved from http://arxiv.org/abs/2005.10550

    View More
  • Deep Learning for Anomaly Detection: A Review

    Pang, G., Shen, C., Cao, L., & Hengel, A. van den. (2020). Deep Learning for Anomaly Detection: A Review. http://arxiv.org/abs/2007.02500

    View More
  • Few-Shot Microscopy Image Cell Segmentation

    Dawoud, Y., Hornauer, J., Carneiro, G., & Belagiannis, V. (2020). Few-Shot Microscopy Image Cell Segmentation. Retrieved from http://arxiv.org/abs/2007.01671

    View More
  • Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks.

    Liu, Y., Liu, L., Wang, P., Zhang, P., & Lei, Y. (2020). Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks. Retrieved from http://arxiv.org/abs/2007.03207

    View More
  • Attend And Discriminate: Beyond the State-of-the-Art for Human Activity Recognition using Wearable Sensors

    Abedin, A., Ehsanpour, M., Shi, Q., Rezatofighi, H., & Ranasinghe, D. C. (2020). Attend And Discriminate: Beyond the State-of-the-Art for Human Activity Recognition using Wearable Sensors. Retrieved from http://arxiv.org/abs/2007.07172

    View More
  • AQD: Towards Accurate Quantized Object Detection

    Liu, J., Zhuang, B., Chen, P., Tan, M., & Shen, C. (2020). AQD: Towards Accurate Quantized Object Detection. Retrieved from http://arxiv.org/abs/2007.06919

    View More
  • Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

    Liu, L., Lu, H., Zou, H., Xiong, H., Cao, Z., & Shen, C. (2020). Weighing Counts: Sequential Crowd Counting by Reinforcement Learning. http://arxiv.org/abs/2007.08260

    View More
  • Quantum Robust Fitting

    Chin, T.-J., Suter, D., Chng, S.-F., & Quach, J. (2020). Quantum Robust Fitting. Retrieved from http://arxiv.org/abs/2006.06986

    View More
  • Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection

    Zhang, J., Xie, Y., Liao, Z., Pang, G., Verjans, J., Li, W., Sun, Z., He, J., Shen, C. & Xia, Y. (2020). Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware Anomaly Detection. Retrieved from http://arxiv.org/abs/2003.12338

    View More
  • Soft Expert Reward Learning for Vision-and-Language Navigation

    Wang, H., Wu, Q., & Shen, C. (2020). Soft Expert Reward Learning for Vision-and-Language Navigation. Retrieved from http://arxiv.org/abs/2007.10835

    View More
  • Object-and-Action Aware Model for Visual Language Navigation

    Qi, Y., Pan, Z., Zhang, S., Hengel, A. van den, & Wu, Q. (2020). Object-and-Action Aware Model for Visual Language Navigation. http://arxiv.org/abs/2007.14626

    View More
  • AE TextSpotter: Learning Visual and Linguistic Representation for Ambiguous Text Spotting

    Wang, W., Liu, X., Ji, X., Xie, E., Liang, D., Yang, Z., Lu, T., Shen, C., & Luo, P. (2020). AE TextSpotter: Learning Visual and Linguistic Representation for Ambiguous Text Spotting. Retrieved from http://arxiv.org/abs/2008.00714

    View More
  • How Trustworthy are the Existing Performance Evaluations for Basic Vision Tasks?

    Rezatofighi, H., Nguyen, T. T. D., Vo, B.-N., Vo, B.-T., Savarese, S., & Reid, I. (2020). How Trustworthy are the Existing Performance Evaluations for Basic Vision Tasks? Retrieved from http://arxiv.org/abs/2008.03533

    View More
  • An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance

    van Goor, P., Mahony, R., Hamel, T., & Trumpf, J. (2020). An Observer Design for Visual Simultaneous Localisation and Mapping with Output Equivariance. ArXiv. http://arxiv.org/abs/2005.14347

    View More
  • Single Image Optical Flow Estimation with an Event Camera

    Pan, L., Liu, M., & Hartley, R. (2020). Single Image Optical Flow Estimation with an Event Camera, CVPR 2020. http://arxiv.org/abs/2004.00347

    View More
  • Rethinking Class Relations: Absolute-relative Few-shot Learning

    Zhang, H., Torr, P. H. S., Li, H., Jian, S., & Koniusz, P. (2020). Rethinking Class Relations: Absolute-relative Few-shot Learning, 1–10.

    View More
  • The IKEA ASM Dataset: Understanding People Assembling Furniture through Actions, Objects and Pose

    Ben-Shabat, Y., Yu, X., Saleh, F. S., Campbell, D., Rodriguez-Opazo, C., Li, H., & Gould, S. (2020). The IKEA ASM Dataset: Understanding People Assembling Furniture through Actions, Objects and Pose.

    View More
  • Understanding the Effects of Data Parallelism and Sparsity on Neural Network Training

    Lee, N., Ajanthan, T., Torr, P. H. S., & Jaggi, M. (2020). Understanding the Effects of Data Parallelism and Sparsity on Neural Network Training.

    View More
  • VDO-SLAM: A Visual Dynamic Object-aware SLAM System

    Zhang, J., Henein, M., Mahony, R., & Ila, V. (2020). VDO-SLAM: A Visual Dynamic Object-aware SLAM System.

    View More
  • A Signal Propagation Perspective for Pruning Neural Networks at initialization

    Lee, N., Ajanthan, T., Gould, S., & Torr, P. H. S. (2019). A Signal Propagation Perspective for Pruning Neural Networks at Initialization. ArXiv. http://arxiv.org/abs/1906.06307

    View More
  • Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision

    Rosenberger, P., Cosgun, A., Newbury, R., Kwan, J., Ortenzi, V., Corke, P., & Grafinger, M. (2020). Object-Independent Human-to-Robot Handovers using Real Time Robotic Vision. http://arxiv.org/abs/2006.01797

    View More
  • Control of the Final-Phase of Closed-Loop Visual Grasping using Image-Based Visual Servoing

    Haviland, J., Dayoub, F., & Corke, P. (2020). Control of the Final-Phase of Closed-Loop Visual Grasping using Image-Based Visual Servoing. http://arxiv.org/abs/2001.05650

    View More
  • Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency Detection

    Zhang, J., Xie, J., & Barnes, N. (2020). Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency Detection. http://arxiv.org/abs/2007.12211

    View More
  • Learning Arbitrary-Goal Fabric Folding with One Hour of Real Robot Experience

    Lee, R., Ward, D., Cosgun, A., Dasagi, V., Corke, P., & Leitner, J. (2020). Learning Arbitrary-Goal Fabric Folding with One Hour of Real Robot Experience. http://arxiv.org/abs/2010.03209

    View More
  • Understanding the Importance of Heart Sound Segmentation for Heart Anomaly Detection

    Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). Understanding the Importance of Heart Sound Segmentation for Heart Anomaly Detection. Retrieved from http://arxiv.org/abs/2005.10480

    View More
  • VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change

    Zaffar, M., Ehsan, S., Milford, M., Flynn, D., & McDonald-Maier, K. (2020). VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change. Retrieved from http://arxiv.org/abs/2005.08135

    View More
  • Online Inverse Optimal Control for Control-Constrained Discrete-Time Systems on Finite and Infinite Horizons

    Molloy, T. L., Ford, J. J., & Perez, T. (2020). Online Inverse Optimal Control for Control-Constrained Discrete-Time Systems on Finite and Infinite Horizons. Proceedings of the IEEE Conference on Decision and Control, 2018-December, 1663–1668. Retrieved from http://arxiv.org/abs/2005.06153

    View More
  • Active Preference Learning using Maximum Regret

    Wilde, N., Kulic, D., & Smith, S. L. (2020). Active Preference Learning using Maximum Regret. http://arxiv.org/abs/2005.04067

    View More
  • Supportive Actions for Manipulation in Human-Robot Coworker Teams

    Bansal, S., Newbury, R., Chan, W., Cosgun, A., Allen, A., Kulić, D., Drummond, D., & Isbell, C. (2020). Supportive Actions for Manipulation in Human-Robot Coworker Teams. Retrieved from http://arxiv.org/abs/2005.00769

    View More
  • End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification

    Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification. Retrieved from http://arxiv.org/abs/2005.03222

    View More
  • Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional Emotion Recognition

    Nguyen, D., Nguyen, D. T., Zeng, R., Nguyen, T. T., Tran, S. N., Nguyen, T., Sridharan, S., & Fookes, C. (2020). Deep Auto-Encoders with Sequential Learning for Multimodal Dimensional Emotion Recognition.

    View More
  • Class Anchor Clustering: a Distance-based Loss for Training Open Set Classifiers

    Miller, D., Sünderhauf, N., Milford, M., & Dayoub, F. (2020). Class Anchor Clustering: a Distance-based Loss for Training Open Set Classifiers. Retrieved from http://arxiv.org/abs/2004.02434

    View More
  • Learning to Place Objects onto Flat Surfaces in Human-Preferred Orientations

    Newbury, R., He, K., Cosgun, A., & Drummond, T. (2020). Learning to Place Objects onto Flat Surfaces in Human-Preferred Orientations. Retrieved from http://arxiv.org/abs/2004.00249

    View More
  • Joint Deep Cross-Domain Transfer Learning for Emotion Recognition

    Nguyen, D., Sridharan, S., Nguyen, D. T., Denman, S., Tran, S. N., Zeng, R., & Fookes, C. (2020). Joint Deep Cross-Domain Transfer Learning for Emotion Recognition. (2018). Retrieved from http://arxiv.org/abs/2003.11136

    View More
  • How to Train Your Event Camera Neural Network

    Stoffregen, T., Scheerlinck, C., Scaramuzza, D., Drummond, T., Barnes, N., Kleeman, L., & Mahony, R. (2020). How to Train Your Event Camera Neural Network. Retrieved from http://arxiv.org/abs/2003.09078

    View More
  • Generative Low-bitwidth Data Free Quantization

    Xu, S., Li, H., Zhuang, B., Liu, J., Cao, J., Liang, C., & Tan, M. (2020). Generative Low-bitwidth Data Free Quantization. Retrieved from http://arxiv.org/abs/2003.03603

    View More
  • Efficient Semantic Video Segmentation with Per-frame Inference

    Liu, Y., Shen, C., Yu, C., & Wang, J. (2020). Efficient Semantic Video Segmentation with Per-frame Inference. Retrieved from https://tinyurl.com/segment-video

    View More
  • PAC-Bayesian Meta-learning with Implicit Prior

    Nguyen, C., Do, T.-T., & Carneiro, G. (2020). PAC-Bayesian Meta-learning with Implicit Prior. Retrieved from http://arxiv.org/abs/2003.02455

    View More
  • ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network

    Liu, Y., Chen, H., Shen, C., He, T., Jin, L., & Wang, L. (2020). ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network. Retrieved from http://arxiv.org/abs/2002.10200

    View More
  • Globally Optimal Contrast Maximisation for Event-based Motion Estimation

    Liu, D., Parra, Á., & Chin, T.-J. (2020). Globally Optimal Contrast Maximisation for Event-based Motion Estimation. Retrieved from http://arxiv.org/abs/2002.10686

    View More
  • 3D Gated Recurrent Fusion for Semantic Scene Completion

    Liu, Y., Li, J., Yan, Q., Yuan, X., Zhao, C., Reid, I., & Cadena, C. (2020). 3D Gated Recurrent Fusion for Semantic Scene Completion. Retrieved from http://arxiv.org/abs/2002.07269

    View More
  • Hyperspectral Classification Based on 3D Asymmetric Inception Network with Data Fusion Transfer Learning

    Zhang, H., Liu, Y., Fang, B., Li, Y., Liu, L., & Reid, I. (2020). Hyperspectral Classification Based on 3D Asymmetric Inception Network with Data Fusion Transfer Learning. Retrieved from https://github.com/UniLauX/AINet

    View More
  • DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data

    Yin, W., Wang, X., Shen, C., Liu, Y., Tian, Z., Xu, S., Sun, C., & Renyin, D. (2020). DiverseDepth: Affine-invariant Depth Prediction Using Diverse Data. Retrieved from http://arxiv.org/abs/2002.00569

    View More
  • Learn to Predict Sets Using Feed-Forward Neural Networks

    Rezatofighi, H., Kaskman, R., Motlagh, F. T., Shi, Q., Milan, A., Cremers, D., Leal-Taixé, L., & Reid, I. (2020). Learn to Predict Sets Using Feed-Forward Neural Networks. Retrieved from http://arxiv.org/abs/2001.11845

    View More
  • Separating Content from Style Using Adversarial Learning for Recognizing Text in the Wild

    Luo, C., Lin, Q., Liu, Y., Jin, L., & Shen, C. (2020). Separating Content from Style Using Adversarial Learning for Recognizing Text in the Wild. Retrieved from http://arxiv.org/abs/2001.04189

    View More
  • Memorizing Comprehensively to Learn Adaptively: Unsupervised Cross-Domain Person Re-ID with Multi-level Memory

    Zhang, X., Gong, D., Cao, J., & Shen, C. (2020). Memorizing Comprehensively to Learn Adaptively: Unsupervised Cross-Domain Person Re-ID with Multi-level Memory. Retrieved from http://arxiv.org/abs/2001.04123

    View More
  • From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting

    Xiong, H., Lu, H., Liu, C., Liu, L., Shen, C., & Cao, Z. (2020). From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting. Retrieved from https://tinyurl.com/SS-DCNet.

    View More
  • Learning and Memorizing Representative Prototypes for 3D Point Cloud Semantic and Instance Segmentation

    He, T., Gong, D., Tian, Z., & Shen, C. (2020). Learning and Memorizing Representative Prototypes for 3D Point Cloud Semantic and Instance Segmentation.

    View More
  • Learning to Zoom-in via Learning to Zoom-out: Real-world Super-resolution by Generating and Adapting Degradation

    Gong, D., Sun, W., Shi, Q., Van Den Hengel, A., & Zhang, Y. (2020). Learning to Zoom-in via Learning to Zoom-out: Real-world Super-resolution by Generating and Adapting Degradation.https://arxiv.org/pdf/2001.02381.pdf

    View More
  • Discrimination-aware Network Pruning for Deep Model Compression

    Liu, J., Zhuang, B., Zhuang, Z., Guo, Y., Huang, J., Zhu, J., & Tan, M. (2020). Discrimination-aware Network Pruning for Deep Model Compression. Retrieved from https://github.com/SCUT-AILab/DCP.

    View More
  • Switchable Precision Neural Networks

    Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Switchable Precision Neural Networks. Retrieved from http://arxiv.org/abs/2002.02815

    View More
  • Automatic Pruning for Quantized Neural Networks

    Guerra, L., Zhuang, B., Reid, I., & Drummond, T. (2020). Automatic Pruning for Quantized Neural Networks. Retrieved from http://arxiv.org/abs/2002.00523

    View More
  • String stable integral control of vehicle platoons with disturbances

    Silva, G. F., Donaire, A., McFadyen, A., & Ford, J. (2020). String stable integral control of vehicle platoons with disturbances. Retrieved from http://arxiv.org/abs/2002.09666

    View More
  • A Multiple Decoder CNN for Inverse Consistent 3D Image Registration

    Nazib, A., Fookes, C., Salvado, O., & Perrin, D. (2020). A Multiple Decoder CNN for Inverse Consistent 3D Image Registration. Retrieved from http://arxiv.org/abs/2002.06468

    View More
  • Enhancing Feature Invariance with Learned Image Transformations for Image Retrieval

    Tursun, O., Denman, S., Sridharan, S., & Fookes, C. (2020). Enhancing Feature Invariance with Learned Image Transformations for Image Retrieval. Retrieved from http://arxiv.org/abs/2002.01642

    View More
  • EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility in robotic manipulation

    Morrison, D., Corke, P., & Leitner, J. (2020). EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility in robotic manipulation. Retrieved from http://arxiv.org/abs/2003.01314

    View More
  • Maximising Manipulability During Resolved-Rate Motion Control

    Haviland, J., & Corke, P. (2020). Maximising Manipulability During Resolved-Rate Motion Control. Retrieved from http://arxiv.org/abs/2002.11901

    View More
  • Robot Navigation in Unseen Spaces using an Abstract Map

    Talbot, B., Dayoub, F., Corke, P., & Wyeth, G. (2020). Robot Navigation in Unseen Spaces using an Abstract Map. Retrieved from http://arxiv.org/abs/2001.11684

    View More
  • Multiplicative Controller Fusion: A Hybrid Navigation Strategy For Deployment in Unknown Environments

    Rana, K., Dasagi, V., Talbot, B., Milford, M., & Sünderhauf, N. (2020). Multiplicative Controller Fusion: A Hybrid Navigation Strategy For Deployment in Unknown Environments. Retrieved from http://arxiv.org/abs/2003.05117

    View More
  • MVP: Unified Motion and Visual Self-Supervised Learning for Large-Scale Robotic Navigation

    Chancán, M., & Milford, M. (2020). MVP: Unified Motion and Visual Self-Supervised Learning for Large-Scale Robotic Navigation. Retrieved from http://arxiv.org/abs/2003.00667

    View More
  • Hierarchical Multi-Process Fusion for Visual Place Recognition

    Hausler, S., & Milford, M. (2020). Hierarchical Multi-Process Fusion for Visual Place Recognition. Retrieved from http://arxiv.org/abs/2002.03895

    View More
  • Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations

    Garg, S., & Milford, M. (2020). Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations. Retrieved from http://arxiv.org/abs/2001.08434

    View More
  • Close-Proximity Underwater Terrain Mapping Using Learning-based Coarse Range Estimation

    Arain, B., Dayoub, F., Rigby, P., & Dunbabin, M. (2020). Close-Proximity Underwater Terrain Mapping Using Learning-based Coarse Range Estimation. Retrieved from http://arxiv.org/abs/2001.00330

    View More