2020 Publications
In 2020 our researchers published 238 papers and submitted a further 167.
JOURNAL ARTICLES (136)
*bold denotes Core Centre Research Output
Abbasnejad, M. E., Shi, J., van den Hengel, A., & Liu, L. (2020). GADE: A Generative Adversarial Approach to Density Estimation and its Applications. International Journal of Computer Vision, 128(10–11), 2731–2743. https://doi.org/10.1007/s11263-020-01360-9
Abdi, E., Kulic, D., & Croft, E. (2020). Haptics in teleoperated medical interventions: Force measurement, haptic interfaces and their influence on users performance. IEEE Transactions on Biomedical Engineering, 1–1. https://doi.org/10.1109/tbme.2020.2987603
Adeli, V., Adeli, E., Reid, I., Niebles, J. C., & Rezatofighi, H. (2020). Socially and Contextually Aware Human Motion and Pose Forecasting. IEEE Robotics and Automation Letters, 5(4), 6033–6040. https://doi.org/10.1109/LRA.2020.3010742
Ahmedt Aristizabal, D., Fernando, T., Denman, S., Robinson, J. E., Sridharan, S., Johnston, P. J., Laurens, K.R., & Fookes, C. (2020). Identification of Children At Risk of Schizophrenia via Deep Learning and EEG Responses. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2020.2984238
Ali, S., Jonmohamadi, Y., Takeda, Y., Roberts, J., Crawford, R., & Pandey, A. K. (2020). Supervised Scene Illumination Control in Stereo Arthroscopes for Robot Assisted Minimally Invasive Surgery. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2020.3037301
Angelova, A., Carneiro, G., Sünderhauf, · Niko, Leitner, J., Sünderhauf, N., & Io, J. (2020). Special Issue on Deep Learning for Robotic Vision. International Journal of Computer Vision, 128, 1160–1161. https://doi.org/10.1007/s11263-020-01324-z
Antico, M., Sasazawa, F., Dunnhofer, M., Camps, S. M., Jaiprakash, A. T., Pandey, A. K., Crawford, R., Carneiro, G., & Fontanarosa, D. (2020). Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy. Ultrasound in Medicine and Biology, 46(2), 422–435. https://doi.org/10.1016/j.ultrasmedbio.2019.10.015
Antico, M., Sasazawa, F., Takeda, Y., Jaiprakash, A. T., Wille, M. L., Pandey, A. K., Crawford, R., & Fontanarosa, D. (2020). 4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study. IEEE Access, 8, 146331–146341. https://doi.org/10.1109/ACCESS.2020.3014999
Antico, M., Vukovic, D., Camps, S. M., Sasazawa, F., Takeda, Y., Le, A. T. H., Jaiprakash, A., Roberts, J., Crawford, R., Fontanarosa, D., & Carneiro, G. (2020). Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(12), 2543–2552. https://doi.org/10.1109/TUFFC.2020.2965291
Anwar, S., Khan, S., & Barnes, N. (2020). A Deep Journey into Super-resolution: A Survey. In ACM Computing Surveys (Vol. 53, Issue 3, pp. 1–34). Association for Computing Machinery. https://doi.org/10.1145/3390462
Arthur, J. N., Chaudhry, M. U., Woodruff, M. A., Pandey, A. K., & Yambem, S. D. (2020). Effect of Gate Conductance on Hygroscopic Insulator Organic Field‐Effect Transistors. Advanced Electronic Materials, 6(5), 1901079. https://doi.org/10.1002/aelm.201901079
Ayton, L. N., Barnes, N., Dagnelie, G., Fujikado, T., Goetz, G., Hornig, R., Jones, B. W., Muqit, M. M. K., Rathbun, D. L., Stingl, K., Weiland, J. D., & Petoe, M. A. (2020). An update on retinal prostheses. In Clinical Neurophysiology (Vol. 131, Issue 6, pp. 1383–1398). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2019.11.029
Banach, A., Strydom, M., Jaiprakash, A., Carneiro, G., Brown, C., Crawford, R., & McFadyen, A. (2020). Saliency Improvement in Feature-Poor Surgical Environments Using Local Laplacian of Specified Histograms. IEEE Access, 8, 213378–213388. https://doi.org/10.1109/ACCESS.2020.3040187
Blythe, R., O’Gorman, P. M., Crawford, R. W., Feenan, R., Hatton, A., Whitehouse, S. L., & Graves, N. (2020). Fixation Method for Hip Arthroplasty Stem Following Hip Fracture: A Population-Level Cost-Effectiveness Analysis. Journal of Arthroplasty, 35(6), 1614–1621. https://doi.org/10.1016/j.arth.2020.02.001
C. Santiago, C. Barata and M. Sasdelli et al., LOW: Training deep neural networks by learning optimal sample weights, Pattern Recognition, https://doi.org/10.1016/j.patcog.2020.107585
Calabro, L., Yong, M., Whitehouse, S. L., Hatton, A., de Steiger, R., & Crawford, R. W. (2020). Mortality and Implant Survival With Simultaneous and Staged Bilateral Total Hip Arthroplasty: Experience From the Australian Orthopedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(9), 2518–2524. https://doi.org/10.1016/j.arth.2020.04.027
Cao, J., Guo, Y., Wu, Q., Shen, C., Huang, J., & Tan, M. (2020). Improving Generative Adversarial Networks with Local Coordinate Coding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3012096
Carneiro, G., Zorron Cheng Tao Pu, L., Singh, R., & Burt, A. (2020). Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy. Medical Image Analysis, 62, 101653. https://doi.org/10.1016/j.media.2020.101653
Chan, W. P., Pan, M. K. X. J., Croft, E. A., & Inaba, M. (2020). An Affordance and Distance Minimization Based Method for Computing Object Orientations for Robot Human Handovers. International Journal of Social Robotics, 12(1), 143–162. https://doi.org/10.1007/s12369-019-00546-7
Chancan, M., Hernandez-Nunez, L., Narendra, A., Barron, A. B., & Milford, M. (2020). A Hybrid compact neural architecture for visual place recognition. IEEE Robotics and Automation Letters, 5(2), 993–1000. https://doi.org/10.1109/LRA.2020.2967324
Chen, Q., Wu, Q., Chen, J., Wu, Q., van den Hengel, A., & Tan, M. (2020). Scripted Video Generation With a Bottom-Up Generative Adversarial Network. IEEE Transactions on Image Processing, 29, 7454–7467. https://doi.org/10.1109/TIP.2020.3003227
Cherubini, A., Ortenzi, V., Cosgun, A., Lee, R., & Corke, P. (2020). Model-free vision-based shaping of deformable plastic materials. The International Journal of Robotics Research, 027836492090768. https://doi.org/10.1177/0278364920907684
Collins, J., McVicar, J., Wedlock, D., Brown, R., Howard, D., & Leitner, J. (2020). Benchmarking Simulated Robotic Manipulation through a Real World Dataset. IEEE Robotics and Automation Letters, 5(1), 250–257. https://doi.org/10.1109/LRA.2019.2953663
Coory, J. A., Tan, K. G., Whitehouse, S. L., Hatton, A., Graves, S. E., & Crawford, R. W. (2020). The Outcome of Total Knee Arthroplasty With and Without Patellar Resurfacing up to 17 Years: A Report From the Australian Orthopaedic Association National Joint Replacement Registry. Journal of Arthroplasty, 35(1), 132–138. https://doi.org/10.1016/j.arth.2019.08.007
Dai, Y., Lu, H., & Shen, C. (2020). Towards Light‐Weight Portrait Matting via Parameter Sharing. Computer Graphics Forum, cgf.14179. https://doi.org/10.1111/cgf.14179
de Bem, R., Ghosh, A., Ajanthan, T., Miksik, O., Boukhayma, A., Siddharth, N., & Torr, P. (2020). DGPose: Deep Generative Models for Human Body Analysis. International Journal of Computer Vision, 128(5), 1537–1563. https://doi.org/10.1007/s11263-020-01306-1
Deng, W., Zheng, L., Sun, Y., & Jiao, J. (2021). Rethinking Triplet Loss for Domain Adaptation. IEEE Transactions on Circuits and Systems for Video Technology, 31(1), 29–37. https://doi.org/10.1109/TCSVT.2020.2968484
Dhanani, J., Pang, G., Pincus, J., Ahern, B., Goodwin, W., Cowling, N., Whitten, G., Abdul-Aziz, M. H., Martin, S., Corke, P., & Laupland, K. B. (2020). Increasing ventilator surge capacity in COVID 19 pandemic: Design, manufacture and in vitro-in vivo testing in anaesthetized healthy pigs of a rapid prototyped mechanical ventilator. BMC Research Notes, 13(1), 1–6. https://doi.org/10.1186/s13104-020-05259-z
Dissanayake, T., Fernando, T., Denman, S., Ghaemmaghami, H., Sridharan, S., & Fookes, C. (2020). Domain Generalization in Biosignal Classification. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2020.3045720
Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation. IEEE Journal of Biomedical and Health Informatics, 1–1. https://doi.org/10.1109/jbhi.2020.3027910
Dunnhofer, M., Antico, M., Sasazawa, F., Takeda, Y., Camps, S., Martinel, N., Micheloni, C., Carneiro, G., & Fontanarosa, D. (2020). Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Medical Image Analysis, 60. https://doi.org/10.1016/j.media.2019.101631
Farazi, M. R., Khan, S. H., & Barnes, N. (2020). From known to the unknown: Transferring knowledge to answer questions about novel visual and semantic concepts. Image and Vision Computing, 103, 103985. https://doi.org/10.1016/j.imavis.2020.103985
faria, F. A., & Carneiro, G. (2020). Why are Generative Adversarial Networks so Fascinating and Annoying? 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 1–8. https://doi.org/10.1109/SIBGRAPI51738.2020.00009
Fernando, T., Denman, S., Ahmedt-Aristizabal, D., Sridharan, S., Laurens, K. R., Johnston, P., & Fookes, C. (2020). Neural memory plasticity for medical anomaly detection. Neural Networks, 127, 67–81. https://doi.org/10.1016/j.neunet.2020.04.011
Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020). Deep Inverse Reinforcement Learning for Behavior Prediction in Autonomous Driving: Accurate Forecasts of Vehicle Motion. IEEE Signal Processing Magazine, 38(1), 87–96. https://doi.org/10.1109/MSP.2020.2988287
Fernando, T., Fookes, C., Denman, S., & Sridharan, S. (2020). Detection of Fake and Fraudulent Faces via Neural Memory Networks. IEEE Transactions on Information Forensics and Security, 16, 1973–1988. https://doi.org/10.1109/TIFS.2020.3047768
Fernando, T., Sridharan, S., McLaren, M., Priyasad, D., Denman, S., & Fookes, C. (2020). Temporarily-Aware Context Modeling Using Generative Adversarial Networks for Speech Activity Detection. IEEE/ACM Transactions on Audio Speech and Language Processing, 28, 1159–1169. https://doi.org/10.1109/TASLP.2020.2982297
Ferrarini, B., Waheed, M., Waheed, S., Ehsan, S., Milford, M. J., & McDonald-Maier, K. D. (2020). Exploring performance bounds of visual place recognition using extended precision. IEEE Robotics and Automation Letters, 5(2), 1688–1695. https://doi.org/10.1109/LRA.2020.2969197
Fielding, A. L., Pandey, A. K., Jonmohamadi, Y., Via, R., Weber, D. C., Lomax, A. J., & Fattori, G. (2020). Preliminary study of the Intel RealSenseTM D415 camera for monitoring respiratory like motion of an irregular surface. IEEE Sensors Journal, 1–1. https://doi.org/10.1109/jsen.2020.2993264
Fischer, T., & Milford, M. (2020). Event-based visual place recognition with ensembles of temporal windows. IEEE Robotics and Automation Letters, 5(4), 6924–6931. https://doi.org/10.1109/LRA.2020.3025505
Ford, J. J., James, J., & Molloy, T. L. (2020). On the informativeness of measurements in Shiryaev’s Bayesian quickest change detection. Automatica, 111, 108645. https://doi.org/10.1016/j.automatica.2019.108645
Foster, A. L., Moriarty, T. F., Trampuz, A., Jaiprakash, A., Burch, M. A., Crawford, R., Paterson, D. L., Metsemakers, W-J., Schuetz, M., & Richards, R. G. (2020). Fracture-related infection: current methods for prevention and treatment. Expert Review of Anti-Infective Therapy, 18(4), 307–321. https://doi.org/10.1080/14787210.2020.1729740
Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2020). Fine-grained action segmentation using the semi-supervised action GAN. Pattern Recognition, 98, 107039. https://doi.org/10.1016/j.patcog.2019.107039
Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2020). Hierarchical Attention Network for Action Segmentation. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2020.01.023
Garg, S., Harwood, B., Anand, G., & Milford, M. (2020). Delta Descriptors: Change-Based Place Representation for Robust Visual Localization. IEEE Robotics and Automation Letters, 5(4), 5120–5127. https://doi.org/10.1109/LRA.2020.3005627
Gong, D., Zhang, Z., Shi, Q., Van Den Hengel, A., Shen, C., & Zhang, Y. (2020). Learning Deep Gradient Descent Optimization for Image Deconvolution. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5468–5482. https://doi.org/10.1109/TNNLS.2020.2968289
Gou, Y., Lei, Y., Liu, L., Zhang, P., & Peng, X. (2020). A Dynamic Parameter Enhanced Network for distant supervised relation extraction. Knowledge-Based Systems, 197, 105912. https://doi.org/10.1016/j.knosys.2020.105912
Guan, Q., Huang, Y., Zhong, Z., Zheng, Z., Zheng, L., & Yang, Y. (2020). Thorax disease classification with attention guided convolutional neural network. Pattern Recognition Letters, 131, 38–45. https://doi.org/10.1016/j.patrec.2019.11.040
Guo, Y., Chen, J., Du, Q., Van Den Hengel, A., Shi, Q., & Tan, M. (2020). Multi-way backpropagation for training compact deep neural networks. Neural Networks, 126, 250–261. https://doi.org/10.1016/j.neunet.2020.03.001
Han, K., Liu, M., Schnieders, D., & Wong, K. Y. K. (2021). Fixed Viewpoint Mirror Surface Reconstruction under an Uncalibrated Camera. IEEE Transactions on Image Processing, 30, 2141–2154. https://doi.org/10.1109/TIP.2021.3049946
Hausler, S., Chen, Z., Hasselmo, M. E., & Milford, M. (2020). Bio-inspired multi-scale fusion. Biological Cybernetics, 114(2), 209–229. https://doi.org/10.1007/s00422-020-00831-z
He, T., Liu, Y., Shen, C., Wang, X., & Sun, C. (2020). Instance-Aware Embedding for Point Cloud Instance Segmentation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12375 LNCS (pp. 255–270). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-58577-8_16
Hernandez, V., Kulić, D., & Venture, G. (2020). Adversarial autoencoder for visualization and classification of human activity: Application to a low-cost commercial force plate. Journal of Biomechanics, 103, 109684. https://doi.org/10.1016/j.jbiomech.2020.109684
Hinas, A., Ragel, R., Roberts, J., & Gonzalez, F. (2020). A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS. Sensors, 20(1), 272. https://doi.org/10.3390/s20010272
Hohwy, J., Hebblewhite, A., & Drummond, T. (2020). Events, Event Prediction, and Predictive Processing. Topics in Cognitive Science, tops.12491. https://doi.org/10.1111/tops.12491
Hojnik, T., Dungavell, R. A., Flick, P. D., & Roberts, J. M. (2020). Wheeled Rovers with Posable Hubs for Terrestrial and Extraterrestrial Exploration. IEEE Access, 8, 154318–154328. https://doi.org/10.1109/access.2020.3018429
Hua, M. D., Trumpf, J., Hamel, T., Mahony, R., & Morin, P. (2020). Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization. Automatica, 115, 108858. https://doi.org/10.1016/j.automatica.2020.108858
Jacobson, A., Zeng, F., Smith, D., Boswell, N., Peynot, T., & Milford, M. (2020). What localizes beneath: A metric multisensor localization and mapping system for autonomous underground mining vehicles. Journal of Field Robotics, rob.21978. https://doi.org/10.1002/rob.21978
Jain, M., Subramanyam, A. V., Denman, S., Sridharan, S., & Fookes, C. (2020). LSTM guided ensemble correlation filter tracking with appearance model pool. Computer Vision and Image Understanding, 195, 102935. https://doi.org/10.1016/j.cviu.2020.102935
Jawahar, C. V., Li, H., Mori, G., & Schindler, K. (2020, April 1). Guest Editorial: Special Issue on ACCV 2018. International Journal of Computer Vision, Vol. 128, p. 909. https://doi.org/10.1007/s11263-020-01296-0
Jayaratne, R., Kuhn, T., Christensen, B., Liu, X., Zing, I., Lamont, R., Dunbabin, M., Maddox, J., Fisher, G., & Morawska, L. (2020). Using a network of low-cost particle sensors to assess the impact of ship emissions on a residential community. Aerosol and Air Quality Research, 20(12), 2754–2764. https://doi.org/10.4209/aaqr.2020.06.0280
Jayaratne, R., Liu, X., Ahn, K. H., Asumadu-Sakyi, A., Fisher, G., Gao, J., Mabon, A., Mazaheri, M., Mullins, B., Nyaku, M., Ristovski, Z., Scorgie, Y., Thai, P., Dunbabin, M., & Morawska, L. (2020). Low-cost PM2.5 sensors: An assessment of their suitability for various applications. Aerosol and Air Quality Research, 20(3), 520–532. https://doi.org/10.4209/aaqr.2018.10.0390
Jonmohamadi, Y., Muthukumaraswamy, S., Chen, J., Roberts, J., Crawford, R., & Pandey, A. (2020). Extraction of Common Task Features in EEG-fMRI Data Using Coupled Tensor-Tensor Decomposition. Brain Topography, 33(5), 636–650. https://doi.org/10.1007/s10548-020-00787-0
Jonmohamadi, Y., Takeda, Y., Liu, F., Sasazawa, F., Maicas, G., Crawford, R., Roberts, J., Pandey, A.K., & Carneiro, G. (2020). Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning. IEEE Access, 1–1. https://doi.org/10.1109/access.2020.2980025
Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function. Computer Vision and Image Understanding, 102989. https://doi.org/10.1016/j.cviu.2020.102989
Kielar, M., Gooch, H., Xu, L., Pandey, A. K., & Sah, P. (2021). Direct Detection of Neuronal Activity Using Organic Photodetectors. ACS Photonics, 8(1), 228–237. https://doi.org/10.1021/acsphotonics.0c01378
Kielar, M., Hamid, T., Wiemer, M., Windels, F., Hirsch, L., Sah, P., & Pandey, A. K. (2020). Light Detection in Open‐Circuit Voltage Mode of Organic Photodetectors. Advanced Functional Materials, 30(9), 1907964. https://doi.org/10.1002/adfm.201907964
Laurie, J., Higgins, N., Peynot, T., & Roberts, J. (2020). Dedicated Exposure Control for Remote Photoplethysmography. IEEE Access, 8, 116642–116652. https://doi.org/10.1109/ACCESS.2020.3003548
Lehnert, C., McCool, C., Corke, P., Sa, I., Stachniss, C., van Henten, E. J., & Nieto, J. (2020). Special issue on agricultural robotics. In Journal of Field Robotics (Vol. 37, Issue 1, pp. 5–6). John Wiley and Sons Inc. https://doi.org/10.1002/rob.21926
Lehnert, C., McCool, C., Sa, I., & Perez, T. (2020). Performance improvements of a sweet pepper harvesting robot in protected cropping environments. Journal of Field Robotics, rob.21973. https://doi.org/10.1002/rob.21973
Lehnert, C., McCool, C., Stachniss, C., Corke, P., Sa, I., Nieto, J., & Henten, E. J. (2020). JFR special issue on agricultural robotics, part 2. Journal of Field Robotics, 37(2), 185–186. https://doi.org/10.1002/rob.21939
Leitner, J., Morrison, D., Milan, A., Kelly-Boxall, N., Mctaggart, M., Tow, A. W., & Corke, P. (2020). Designing Cartman: A Cartesian Manipulator for the Amazon Robotics Challenge 2017. https://doi.org/10.1007/978-3-030-35679-8_11
Li, J., Liu, Y., Yuan, X., Zhao, C., Siegwart, R., Reid, I., & Cadena, C. (2020). Depth Based Semantic Scene Completion With Position Importance Aware Loss. IEEE Robotics and Automation Letters, 5(1), 219–226. https://doi.org/10.1109/LRA.2019.2953639
Liao, Z., Liu, L., Wu, Q., Teney, D., Shen, C., van den Hengel, A., & Verjans, J. (2020). Medical Data Inquiry Using a Question Answering Model. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020-April, 1490–1493. https://doi.org/10.1109/ISBI45749.2020.9098531
Liu, L., Cao, Z., Lu, H., Xiong, H., & Shen, C. (2020). NSSNet: Scale-Aware Object Counting With Non-Scale Suppression. IEEE Transactions on Intelligent Transportation Systems, 1–12. https://doi.org/10.1109/TITS.2020.3030781
Liu, W., Lin, G., Zhang, T., & Liu, Z. (2020). Guided Co-Segmentation Network for Fast Video Object Segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 1–1. https://doi.org/10.1109/tcsvt.2020.3010293
Liu, W., Zhang, P., Huang, X., Yang, J., Shen, C., & Reid, I. (2020). Real-time Image Smoothing via Iterative Least Squares. ACM Transactions on Graphics, 39(3), 1–24. https://doi.org/10.1145/3388887
Liu, X., Jayaratne, R., Thai, P., Kuhn, T., Zing, I., Christensen, B., Lamont, R., Dunbabin, M., Zhu, S., Gao, J., Wainwright, D., Neale, D., Kan, R., Kirkwood, J., & Morawska, L. (2020). Low-cost sensors as an alternative for long-term air quality monitoring. Environmental Research, 185, 109438. https://doi.org/10.1016/j.envres.2020.109438
Lu, X., Ma, C., Shen, J., Yang, X., Reid, I., & Yang, M.-H. (2020). Deep Object Tracking with Shrinkage Loss. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2020.3041332
Lv, K., Sheng, H., Xiong, Z., Li, W., & Zheng, L. (2020). Improving Driver Gaze Prediction with Reinforced Attention. IEEE Transactions on Multimedia. https://doi.org/10.1109/TMM.2020.3038311
Lv, K., Sheng, H., Xiong, Z., Li, W., & Zheng, L. (2020). Pose-Based View Synthesis for Vehicles: A Perspective Aware Method. IEEE Transactions on Image Processing, Vol. 29, pp. 5163–5174. https://doi.org/10.1109/TIP.2020.2980130
Mandel, N., Milford, M., & Gonzalez, F. (2020). A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded System on UAVs. Sensors, 20(16), 4420. https://doi.org/10.3390/s20164420
Mao, J., Hu, X., Zhang, L., He, X., & Milford, M. (2020). A Bio-Inspired Goal-Directed Visual Navigation Model for Aerial Mobile Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 100(1), 289–310. https://doi.org/10.1007/s10846-020-01190-4
McAuliffe, M. J., O’Connor, P. B., Major, L. J., Garg, G., Whitehouse, S. L., & Crawford, R. W. (2020). Highly Satisfied Total Knee Arthroplasty Patients Display a Wide Range of Soft Tissue Balance. Journal of Knee Surgery, 33(3), 247–254. https://doi.org/10.1055/s-0039-1677873
McAuliffe, M., O’Connor, P., Major, L., Garg, G., Whitehouse, S. L., & Crawford, R. (2020). Which Pre- and Postoperative Coronal Plane Laxity Parameters Influence Patient Satisfaction and Function after Primary Total Knee Arthroplasty? The Journal of Knee Surgery. https://doi.org/10.1055/s-0040-1710362
Meng, L., Lin, D., Francey, A., Gorbet, R., Beesley, P., & Kulić, D. (2020). Learning to Engage with Interactive Systems. ACM Transactions on Human-Robot Interaction, 10(1), 1–29. https://doi.org/10.1145/3408876
Milford, M. (2020). C. Elegans inspires self-driving cars. In Nature Machine Intelligence (Vol. 2, Issue 11, pp. 661–662). Nature Research. https://doi.org/10.1038/s42256-020-00245-3
Milford, M., Anthony, S., & Scheirer, W. (2020). Self-Driving Vehicles: Key Technical Challenges and Progress off the Road. IEEE Potentials, 39(1), 37–45. https://doi.org/10.1109/MPOT.2019.2939376
Molloy, T. L., Fischer, T., Milford, M., & Nair, G. N. (2020). Intelligent Reference Curation for Visual Place Recognition Via Bayesian Selective Fusion. IEEE Robotics and Automation Letters, 6(2), 588–595. https://doi.org/10.1109/LRA.2020.3047791
Molloy, T. L., Ford, J. J., & Perez, T. (2020). Online inverse optimal control for control-constrained discrete-time systems on finite and infinite horizons. Automatica, 120, 109109. https://doi.org/10.1016/j.automatica.2020.109109
Morrison, D., Corke, P., & Leitner, J. (2020). Learning robust, real-time, reactive robotic grasping. The International Journal of Robotics Research, 39(2–3), 183–201. https://doi.org/10.1177/0278364919859066
Morrison, D., Corke, P., Leitner, J., & Leitner, J. (2020). EGAD! An Evolved Grasping Analysis Dataset for Diversity and Reproducibility in Robotic Manipulation. IEEE Robotics and Automation Letters, 5(3), 4368–4375. https://doi.org/10.1109/LRA.2020.2992195
Mount, J., Xu, M., Dawes, L., & Milford, M. (2020). Unsupervised Selection of Optimal Operating Parameters for Visual Place Recognition Algorithms Using Gaussian Mixture Models. IEEE Robotics and Automation Letters, 6(2), 343–350. https://doi.org/10.1109/LRA.2020.3043171
Nash, W. T., Powell, C. J., Drummond, T., & Birbilis, N. (2020). Automated corrosion detection using crowdsourced training for deep learning. Corrosion, 76(2), 135–141. https://doi.org/10.5006/3397
Nguyen, K., Fookes, C., & Sridharan, S. (2020). Constrained Design of Deep Iris Networks. IEEE Transactions on Image Processing, 29, 7166–7175. https://doi.org/10.1109/TIP.2020.2999211
Nguyen, K., Fookes, C., & Sridharan, S. (2020). Context from within: Hierarchical context modeling for semantic segmentation. Pattern Recognition, 105, 107358. https://doi.org/10.1016/j.patcog.2020.107358
Ortenzi, V., Cini, F., Pardi, T., Marturi, N., Stolkin, R., Corke, P., & Controzzi, M. (2020). The Grasp Strategy of a Robot Passer Influences Performance and Quality of the Robot-Human Object Handover. Frontiers in Robotics and AI, 7, 542406. https://doi.org/10.3389/frobt.2020.542406
Pan, L., Hartley, R., Scheerlinck, C., Liu, M., Yu, X., & Dai, Y. (2020). High Frame Rate Video Reconstruction based on an Event Camera. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2020.3036667
Park, C., Moghadam, P., Kim, S., Sridharan, S., & Fookes, C. (2020). Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless Approach. IEEE Robotics and Automation Letters, 1–1. https://doi.org/10.1109/LRA.2020.2969164
Pfister, F. M. J., Um, T. T., Pichler, D. C., Goschenhofer, J., Abedinpour, K., Lang, M., Endo, S., Ceballos-Baumann, A. O., Hirche, S., Bischl, B., Kulić, D., & Fietzek, U. M. (2020). High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks. Scientific Reports, 10(1), 5860. https://doi.org/10.1038/s41598-020-61789-3
Quach, L. H., Jayamaha, S., Whitehouse, S. L., Crawford, R., Pulle, C. R., & Bell, J. J. (2020). Comparison of the Charlson Comorbidity Index with the ASA score for predicting 12-month mortality in acute hip fracture. Injury, 51(4), 1004–1010. https://doi.org/10.1016/j.injury.2020.02.074
Rahman, M. M., Fookes, C., Baktashmotlagh, M., & Sridharan, S. (2020). Correlation-aware adversarial domain adaptation and generalization. Pattern Recognition, 100, 107124. https://doi.org/10.1016/j.patcog.2019.107124
Rosenberger, P., Cosgun, A., Newbury, R., Kwan, J., Ortenzi, V., Corke, P., & Grafinger, M. (2021). Object-Independent Human-to-Robot Handovers Using Real Time Robotic Vision. IEEE Robotics and Automation Letters, 6(1), 17–23. https://doi.org/10.1109/LRA.2020.3026970
Sandino, J., Vanegas, F., Maire, F., Caccetta, P., Sanderson, C., & Gonzalez, F. (2020). UAV Framework for Autonomous Onboard Navigation and People/Object Detection in Cluttered Indoor Environments. Remote Sensing, 12(20), 3386. https://doi.org/10.3390/rs12203386
Serna, J. G., Vanegas, F., Gonzalez, F., & Flannery, D. (2020). A Review of Current Approaches for UAV Autonomous Mission Planning for Mars Biosignatures Detection. 1–15. https://doi.org/10.1109/aero47225.2020.9172467
Strydom, M. L., Banach, A., Roberts, J., Crawford, R., & Jaiprakash, A. T. (2020). Kinematic Model of the Human Leg Using DH Parameters. IEEE Access, 8, 191737–191750. https://doi.org/10.1109/access.2020.3031295
Strydom, M., Banach, A., Wu, L., Jaiprakash, A., Crawford, R., & Roberts, J. (2020). Anatomical Joint Measurement with Application to Medical Robotics. IEEE Access, 8, 118510–118524. https://doi.org/10.1109/ACCESS.2020.3002541
Suddrey, G., & Robinson, N. (2020). A Software System for Human-Robot Interaction To Collect Research Data. Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, 459–461. https://doi.org/10.1145/3371382.3378287
Tan, K. G., Whitehouse, S. L., & Crawford, R. W. (2020). On-Table and Short-Term Mortality: A Single-Institution Experience With Cementing All Hip Arthroplasties for Neck of Femur Fractures. Journal of Arthroplasty, 35(4), 1095–1100. https://doi.org/10.1016/j.arth.2019.11.027
Tian, Z., Shen, C., Chen, H., & He, T. (2020). FCOS: A Simple and Strong Anchor-free Object Detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3032166
Titchener, S. A., Kvansakul, J., Shivdasani, M. N., Fallon, J. B., Nayagam, D. A. X., Epp, S. B., Williams, C. E., Barnes, N., Kentler, W. G., Kolic, M., Baglin, E. K., Ayton, L. N., Abbott, C. J., Luu, C. D., Allen, P. J., & Petoe, M. A. (2020). Oculomotor responses to dynamic stimuli in a 44-channel suprachoroidal retinal prosthesis. Translational Vision Science and Technology, 9(13), 1–13. https://doi.org/10.1167/tvst.9.13.31
Tursun, O., Denman, S., Zeng, R., Sivapalan, S., Sridharan, S., & Fookes, C. (2020). MTRNet++: One-stage mask-based scene text eraser. Computer Vision and Image Understanding, 201, 103066. https://doi.org/10.1016/j.cviu.2020.103066
Vickers, M. L., Ballard, E. L., Harris, P. N. A., Knibbs, L. D., Jaiprakash, A., Dulhunty, J. M., Crawford, R., & Parkinson, B. (2020). Bacterial Profile, Multi-Drug Resistance and Seasonality Following Lower Limb Orthopaedic Surgery in Tropical and Subtropical Australian Hospitals: An Epidemiological Cohort Study. International Journal of Environmental Research and Public Health, 17(2), 657. https://doi.org/10.3390/ijerph17020657
Villalba, C., Donovan, J., Askew, D., Roberts, J., Crawford, R., & Jaiprakash, A. (2020). Design tensions: exploring the negotiation tensions when living with type 2 diabetes. Design for Health, 1–20. https://doi.org/10.1080/24735132.2020.1771926
Walker, O., Vanegas, F., & Gonzalez, F. (2020). A Framework for Multi-Agent UAV Exploration and Target-Finding in GPS-Denied and Partially Observable Environments. Sensors, 20(17), 4739. https://doi.org/10.3390/s20174739
Walker, O., Vanegas, F., Gonzalez, F., & Koenig, S. (2020). Multi-UAV Target-Finding in Simulated Indoor Environments using Deep Reinforcement Learning. 1–9. https://doi.org/10.1109/aero47225.2020.9172262
Wang, Y., Gong, D., Yang, J., Shi, Q., van den Hengel, A., Xie, D., & Zeng, B. (2020). Deep Single Image Deraining via Modeling Haze-like Effect. IEEE Transactions on Multimedia, 1–1. https://doi.org/10.1109/TMM.2020.3013383
West, J., Maire, F., Browne, C., & Denman, S. (2020). Improved reinforcement learning with curriculum. Expert Systems with Applications, 158, 113515. https://doi.org/10.1016/j.eswa.2020.113515
Westermann, K., Lin, J. F. S., & Kulić, D. (2020). Inverse optimal control with time-varying objectives: application to human jumping movement analysis. Scientific Reports, 10(1), 11174. https://doi.org/10.1038/s41598-020-67901-x
Wilde, N., Blidaru, A., Smith, S. L., & Kulić, D. (2020). Improving user specifications for robot behavior through active preference learning: Framework and evaluation. The International Journal of Robotics Research, 39(6), 651–667. https://doi.org/10.1177/0278364920910802
Wu, L., Jaiprakash, A., Pandey, A. K., Fontanarosa, D., Jonmohamadi, Y., Antico, M., Strydom, M., Razjigaev, A., Sasazawa, F., Roberts, J., & Crawford, R. (2020). Robotic and Image-Guided Knee Arthroscopy. In Handbook of Robotic and Image-Guided Surgery (pp. 493–514). Elsevier. https://doi.org/10.1016/b978-0-12-814245-5.00029-3
Wu, X., Wang, Y., Xiao, Y., Crawford, R., Mao, X., & Prasadam, I. (2020). Extracellular vesicles: Potential role in osteoarthritis regenerative medicine. In Journal of Orthopaedic Translation (Vol. 21, pp. 73–80). Elsevier (Singapore) Pte Ltd. https://doi.org/10.1016/j.jot.2019.10.012
Xie, Y., Zhang, J., Lu, H., Shen, C., & Xia, Y. (2020). SESV: Accurate Medical Image Segmentation by Predicting and Correcting Errors. IEEE Transactions on Medical Imaging, PP, 1–1. https://doi.org/10.1109/TMI.2020.3025308
Xu, L., Rahmani, M., Ma, Y., Smirnova, D. A., Kamali, K. Z., Deng, F., Chiang, Y. K., Huang, L., Zhang, H., Gould, S., Neshev, D. N., & Miroshnichenko, A. E. (2020). Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach. Advanced Photonics, 2(02), 1. https://doi.org/10.1117/1.AP.2.2.026003
Xu, M., Sunderhauf, N., & Milford, M. (2020). Probabilistic Visual Place Recognition for Hierarchical Localization. IEEE Robotics and Automation Letters, 6(2), 311–318. https://doi.org/10.1109/LRA.2020.3040134
Yu, X., Porikli, F., Fernando, B., & Hartley, R. (2020). Hallucinating Unaligned Face Images by Multiscale Transformative Discriminative Networks. International Journal of Computer Vision, 128(2), 500–526. https://doi.org/10.1007/s11263-019-01254-5
Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. (2020). CoHOG: A light-weight, compute-efficient, and training-free visual place recognition technique for changing environments. IEEE Robotics and Automation Letters, 5(2), 1835–1842. https://doi.org/10.1109/LRA.2020.2969917
Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. D. (2020). Memorable Maps: A Framework for Re-Defining Places in Visual Place Recognition. IEEE Transactions on Intelligent Transportation Systems, 1–15. https://doi.org/10.1109/tits.2020.3001228
Zhang, J., Dai, Y., Zhang, T., Harandi, M. T., Barnes, N., & Hartley, R. (2020). Learning Saliency from Single Noisy Labelling: A Robust Model Fitting Perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2020.3046486
Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., & Zhang, Y. (2020). A Robust Attentional Framework for License Plate Recognition in the Wild. IEEE Transactions on Intelligent Transportation Systems, 1–10. https://doi.org/10.1109/tits.2020.3000072
Zhang, L., Wei, W., Shi, Q., Shen, C., van den Hengel, A., & Zhang, Y. (2020). Accurate Tensor Completion via Adaptive Low-Rank Representation. IEEE Transactions on Neural Networks and Learning Systems, 1–15. https://doi.org/10.1109/TNNLS.2019.2952427
Zhang, Q., Wang, Q., Li, H., & Yu, J. (2020). Ray-Space Epipolar Geometry for Light Field Cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2020.3025949
Zhang, S., Liu, Y., Jin, L., Wei, Z., & Shen, C. (2020). OPMP: An Omni-directional Pyramid Mask Proposal Network for Arbitrary-shape Scene Text Detection. IEEE Transactions on Multimedia, 1–1. https://doi.org/10.1109/TMM.2020.2978630
Zhao, J., Yang, W., Yang, M., Huang, W., Yang, Q., & Zhang, H. (2020). One‐shot video‐based person re‐identification with variance subsampling algorithm. Computer Animation and Virtual Worlds, 31(4–5), e1964. https://doi.org/10.1002/cav.1964
Zheng, Z., Zheng, L., Garrett, M., Yang, Y., Xu, M., & Shen, Y. D. (2020). Dual-path Convolutional Image-Text Embeddings with Instance Loss. ACM Transactions on Multimedia Computing, Communications and Applications, 16(2), 1–23. https://doi.org/10.1145/3383184
Zhou, D., Dai, Y., & Li, H. (2020). Ground-Plane-Based Absolute Scale Estimation for Monocular Visual Odometry. IEEE Transactions on Intelligent Transportation Systems, 21(2), 791–802. https://doi.org/10.1109/TITS.2019.2900330
CONFERENCE PAPERS (102)
*bold denotes Core Centre Research Output
Ahmedt-Aristizabal, D., Armin, M. A., Denman, S., Fookes, C., & Petersson, L. (2020). Attention Networks for Multi-Task Signal Analysis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 184–187. https://doi.org/10.1109/EMBC44109.2020.9175730
Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Petersson, L., Aburn, M. J., & Fookes, C. (2020). Neural Memory Networks for Seizure Type Classification. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020-July, 569–575. https://doi.org/10.1109/EMBC44109.2020.9175641
Akhter, I., Cheong, L. F., & Hartley, R. (2020). Fast postprocessing for difficult discrete energy minimization problems. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 3462–3471. https://doi.org/10.1109/WACV45572.2020.9093369
Aliakbarian, S., Saleh, F. S., Salzmann, M., Petersson, L., & Gould, S. (2020). A stochastic conditioning scheme for diverse human motion prediction. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 5222–5231. https://doi.org/10.1109/CVPR42600.2020.00527
Ben-Shabat Y., Gould S. (2020) DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_2
Cagara, D., Dunbabin, M., & Rigby, P. (2020). A Feature-Based Underwater Path Planning Approach using Multiple Perspective Prior Maps. Proceedings – IEEE International Conference on Robotics and Automation, 8573–8579. https://doi.org/10.1109/ICRA40945.2020.9196680
Campbell D., Liu L., Gould S. (2020) Solving the Blind Perspective-n-Point Problem End-to-End with Robust Differentiable Geometric Optimization. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_15
Chan, W. P., Sakr, M., Quintero, C. P., Croft, E., & Van Der Loos, H. F. M. H. (2020). Towards a Multimodal System combining Augmented Reality and Electromyography for Robot Trajectory Programming and Execution. 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, 419–424. https://doi.org/10.1109/RO-MAN47096.2020.9223526
Chancan, M., & Milford, M. (2020). CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning. Proceedings – IEEE International Conference on Robotics and Automation, 1697–1704. https://doi.org/10.1109/ICRA40945.2020.9197336
Chen, B., Parra, Á., Cao, J., Li, N., & Chin, T. J. (2020). End-to-end learnable geometric vision by backpropagating PNP optimization. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8097–8106. https://doi.org/10.1109/CVPR42600.2020.00812
Cheraghian, A., Rahman, S., Campbell, D., & Petersson, L. (2020). Transductive zero-shot learning for 3D point cloud classification. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 912–922. https://doi.org/10.1109/WACV45572.2020.9093545
Coventry, J., Asselineau, C. A., Salahat, E., Raman, M. A., & Mahony, R. (2020). A robotic vision system for inspection of soiling at CSP plants. AIP Conference Proceedings, 2303(1), 100001. https://doi.org/10.1063/5.0029493
Dellaert F., Rosen D.M., Wu J., Mahony R., Carlone L. (2020) Shonan Rotation Averaging: Global Optimality by Surfing SO(p)n. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_18
Deremetz, M., Lenain, R., Laneurit, J., Debain, C., & Peynot, T. (2020). Autonomous human tracking using uwb sensors for mobile robots: An observer-based approach to follow the human path. CCTA 2020 – 4th IEEE Conference on Control Technology and Applications, 372–379. https://doi.org/10.1109/CCTA41146.2020.9206153
Ditria L., Meyer B.J., Drummond T. (2021) OpenGAN: Open Set Generative Adversarial Networks. In: Ishikawa H., Liu CL., Pajdla T., Shi J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science, vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_29
Du H., Yu X., Zheng L. (2020) Learning Object Relation Graph and Tentative Policy for Visual Navigation. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_2
Ehsanpour M., Abedin A., Saleh F., Shi J., Reid I., Rezatofighi H. (2020) Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_11
Faisal, M., Akhter, I., Ali, M., & Hartley, R. (2020). EpO-Net: Exploiting geometric constraints on dense trajectories for motion saliency. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1873–1882. https://doi.org/10.1109/WACV45572.2020.9093589
Garg, S., & Milford, M. (2020). Fast, Compact and Highly Scalable Visual Place Recognition through Sequence-based Matching of Overloaded Representations. Proceedings – IEEE International Conference on Robotics and Automation, 3341–3348. https://doi.org/10.1109/ICRA40945.2020.9196827
Hall, D., Dayoub, F., Skinner, J., Zhang, H., Miller, D., Corke, P., Carneiro, G., Angelova, A., & Sunderhauf, N. (2020). Probabilistic object detection: Definition and evaluation. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1020–1029. https://doi.org/10.1109/WACV45572.2020.9093599
Hamaya, M., Lee, R., Tanaka, K., Von Drigalski, F., Nakashima, C., Shibata, Y., & Ijiri, Y. (2020). Learning Robotic Assembly Tasks with Lower Dimensional Systems by Leveraging Physical Softness and Environmental Constraints. Proceedings – IEEE International Conference on Robotics and Automation, 7747–7753. https://doi.org/10.1109/ICRA40945.2020.9197327
Hausler, S., & Milford, M. (2020). Hierarchical Multi-Process Fusion for Visual Place Recognition. Proceedings – IEEE International Conference on Robotics and Automation, 3327–3333. https://doi.org/10.1109/ICRA40945.2020.9197360
Henderson, J., Zamani, M., Mahony, R., & Trumpf, J. (2020). A Minimum Energy Filter for Localisation of an Unmanned Aerial Vehicle. Proceedings of the IEEE Conference on Decision and Control, 2020-December, 4188–4193. https://doi.org/10.1109/CDC42340.2020.9303730
Henein, M., Zhang, J., Mahony, R., & Ila, V. (2020). Dynamic SLAM: The Need for Speed. Proceedings – IEEE International Conference on Robotics and Automation, 2123–2129. https://doi.org/10.1109/ICRA40945.2020.9196895
Hojnik, T., Pond, L., Dungavell, R., Flick, P., & Roberts, J. (2020). Generating Locomotion with Effective Wheel Radius Manipulation. Proceedings – IEEE International Conference on Robotics and Automation, 2988–2994. https://doi.org/10.1109/ICRA40945.2020.9196825
Hou, Y., Zheng, L., & Gould, S. (2020). Learning to structure an image with few colors. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 10113–10122. https://doi.org/10.1109/CVPR42600.2020.01013
Hou Y., Zheng L., Gould S. (2020) Multiview Detection with Feature Perspective Transformation. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_1
James, J., Ford, J. J., & Molloy, T. L. (2020). A Novel Technique for Rejecting Non-Aircraft Artefacts in above Horizon Vision-Based Aircraft Detection. 2020 International Conference on Unmanned Aircraft Systems, ICUAS 2020, 600–606. https://doi.org/10.1109/ICUAS48674.2020.9213938
Jiang, L., Gonzalez, F., & McFadyen, A. (2020). Cooperative Game Theory based Multi-UAV Consensus-based Formation Control. 2020 International Conference on Unmanned Aircraft Systems, ICUAS 2020, 93–99. https://doi.org/10.1109/ICUAS48674.2020.9213841
Johnston, A., & Carneiro, G. (2020). Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4755–4764. https://doi.org/10.1109/CVPR42600.2020.00481
Joo, K., Li, H., Oh, T. H., Bok, Y., & Kweon, I. S. (2020). Globally Optimal Relative Pose Estimation for Camera on a Selfie Stick. Proceedings – IEEE International Conference on Robotics and Automation, 4983–4989. https://doi.org/10.1109/ICRA40945.2020.9196921
Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Semantic consistency and identity mapping multi-component generative adversarial network for person re-identification. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 2256–2265. https://doi.org/10.1109/WACV45572.2020.9093323
Li D., Bak S., Bogomolov S. (2020) Reachability Analysis of Nonlinear Systems Using Hybridization and Dynamics Scaling. In: Bertrand N., Jansen N. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2020. Lecture Notes in Computer Science, vol 12288. Springer, Cham. https://doi.org/10.1007/978-3-030-57628-8_16
Li, D., Opazo, C. R., Yu, X., & Li, H. (2020). Word-level deep sign language recognition from video: A new large-scale dataset and methods comparison. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1448–1458. https://doi.org/10.1109/WACV45572.2020.9093512
Li, D., Yu, X., Xu, C., Petersson, L., & Li, H. (2020). Transferring Cross-Domain Knowledge for Video Sign Language Recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 6204–6213. https://doi.org/10.1109/CVPR42600.2020.00624
Liu F., Jonmohamadi Y., Maicas G., Pandey A.K., Carneiro G. (2020) Self-supervised Depth Estimation to Regularise Semantic Segmentation in Knee Arthroscopy. In: Martel A.L. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_58
Lu, Y., Valmadre, J., Wang, H., Kannala, J., Harandi, M., & Torr, P. H. S. (2020). Devon: Deformable volume network for learning optical flow. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 2694–2702. https://doi.org/10.1109/WACV45572.2020.9093590
Lu, K., Barnes, N., Anwar, S., & Zheng, L. (2020). From depth what can you see? Depth completion via auxiliary image reconstruction. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 11303–11312. https://doi.org/10.1109/CVPR42600.2020.01132
Mahony, R., Van Goor, P., Henein, M., Pike, R., Zhang, J., & Ng, Y. (2020). Equivariant Visual Odometry in the Wild. Proceedings of the IEEE Conference on Decision and Control, 2020-December, 1314–1319. https://doi.org/10.1109/CDC42340.2020.9303824
Mandel, N., Alvarez, F. V., Milford, M., & Gonzalez, F. (2020, March 1). Towards Simulating Semantic Onboard UAV Navigation. IEEE Aerospace Conference Proceedings. https://doi.org/10.1109/AERO47225.2020.9172771
Mao W., Liu M., Salzmann M. (2020) History Repeats Itself: Human Motion Prediction via Motion Attention. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_28
Mau, J., Devrelis, V., Day, G., Nash, G., Trumpf, J., & Delic, D. (2020). Through Thick and Thin: Imaging through Obscurant using SPAD array. Proceedings of IEEE Sensors, 2020-October. https://doi.org/10.1109/SENSORS47125.2020.9278706
Mau, J., Devrelis, V., Day, G., Trumpf, J., & Delic, D. V. (2020). The use of statistical mixture models to reduce noise in SPAD images of fog-obscured environments. In C. R. Valenta, J. A. Shaw, & M. Kimata (Eds.), SPIE Future Sensing Technologies (Vol. 11525, p. 20). https://doi.org/10.1117/12.2580251
McGee, J., Mathew, S. J., & Gonzalez, F. (2020). Unmanned Aerial Vehicle and Artificial Intelligence for Thermal Target Detection in Search and Rescue Applications. 2020 International Conference on Unmanned Aircraft Systems, ICUAS 2020, 883–891. https://doi.org/10.1109/ICUAS48674.2020.9213849
Morton, K., McFadyen, A., & Gonzalez Toro, L. F. (2020, March 1). Feasible Polynomial Trajectory Planning for Aerial Manipulation. IEEE Aerospace Conference Proceedings. https://doi.org/10.1109/AERO47225.2020.9172501
Moskvyak, O., Maire, F., Dayoub, F., & Baktashmotlagh, M. (2020). Learning Landmark Guided Embeddings for Animal Re-identification. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision Workshops, WACVW 2020, 12–19. https://doi.org/10.1109/WACVW50321.2020.9096932
Nekrasov, V., Chen, H., Shen, C., & Reid, I. (2020). Architecture search of dynamic cells for semantic video segmentation. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1959–1968. https://doi.org/10.1109/WACV45572.2020.9093531
Nekrasov, V., Shen, C., & Reid, I. (2020). Template-based automatic search of compact semantic segmentation architectures. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 1969–1978. https://doi.org/10.1109/WACV45572.2020.9093567
Ng, Y., Van Goor, P., Hamel, T., & Mahony, R. (2020). Equivariant Systems Theory and Observer Design for Second Order Kinematic Systems on Matrix Lie Groups. Proceedings of the IEEE Conference on Decision and Control, 2020-December, 4194–4199. https://doi.org/10.1109/CDC42340.2020.9303761
Niemand, J., Mathew, S. J., & Gonzalez, F. (2020). Design and Testing of Recycled 3D Printed Foldable Unmanned Aerial Vehicle for Remote Sensing. 2020 International Conference on Unmanned Aircraft Systems, ICUAS 2020, 892–901. https://doi.org/10.1109/ICUAS48674.2020.9213961
Pan, L., Liu, M., & Hartley, R. (2020). Single Image Optical Flow Estimation with an Event Camera. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1669–1678. https://doi.org/10.1109/CVPR42600.2020.00174
Pang, G., Yan, C., Shen, C., van den Hengel, A., & Bai, X. (2020). Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12170–12179. https://doi.org/10.1109/CVPR42600.2020.01219
Peng X., Wang Y., Gao L., Kneip L. (2020) Globally-Optimal Event Camera Motion Estimation. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12371. Springer, Cham. https://doi.org/10.1007/978-3-030-58574-7_4
Priyasad, D., Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2020). Attention Driven Fusion for Multi-Modal Emotion Recognition. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings, 2020-May, 3227–3231. https://doi.org/10.1109/ICASSP40776.2020.9054441
Qi, Y., Wu, Q., Anderson, P., Wang, X., Wang, W. Y., Shen, C., & Van Den Hengel, A. (2020). Reverie: Remote embodied visual referring expression in real indoor environments. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 9979–9988. https://doi.org/10.1109/CVPR42600.2020.01000
Rahimi A., Shaban A., Ajanthan T., Hartley R., Boots B. (2020) Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12369. Springer, Cham. https://doi.org/10.1007/978-3-030-58586-0_24
Rahman, S., Khan, S., & Barnes, N. (2020). Improved Visual-Semantic Alignment for Zero-Shot Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 11932–11939. https://doi.org/10.1609/aaai.v34i07.6868
Rahman S., Khan S., Barnes N., Khan F.S. (2021) Any-Shot Object Detection. In: Ishikawa H., Liu CL., Pajdla T., Shi J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science, vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_6
Ramasinghe, S., Khan, S., Barnes, N., & Gould, S. (2020). Blended convolution and synthesis for efficient discrimination of 3D shapes. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 21–31. https://doi.org/10.1109/WACV45572.2020.9093505
Rana, K., Talbot, B., Dasagi, V., Milford, M., & Sunderhauf, N. (2020). Residual Reactive Navigation: Combining Classical and Learned Navigation Strategies for Deployment in Unknown Environments. Proceedings – IEEE International Conference on Robotics and Automation, 11493–11499. https://doi.org/10.1109/ICRA40945.2020.9197386
Robinson, N. L., Hicks, T. N., Suddrey, G., & Kavanagh, D. J. (2020). The Robot Self-Efficacy Scale: Robot Self-Efficacy, Likability and Willingness to Interact Increases after a Robot-Delivered Tutorial. 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020, 272–277. https://doi.org/10.1109/RO-MAN47096.2020.9223535
Rodriguez-Opazo, C., Marrese-Taylor, E., Saleh, F. S., Li, H., & Gould, S. (2020). Proposal-free temporal moment localization of a natural-language query in video using guided attention. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 2453–2462. https://doi.org/10.1109/WACV45572.2020.9093328
Rusak F. et al. (2020) 3D Brain MRI GAN-Based Synthesis Conditioned on Partial Volume Maps. In: Burgos N., Svoboda D., Wolterink J.M., Zhao C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2020. Lecture Notes in Computer Science, vol 12417. Springer, Cham. https://doi.org/10.1007/978-3-030-59520-3_2
Sandino, J., Vanegas, F., Gonzalez, F., & Maire, F. (2020, March 1). Autonomous UAV Navigation for Active Perception of Targets in Uncertain and Cluttered Environments. IEEE Aerospace Conference Proceedings.https://doi.org/10.1109/AERO47225.2020.9172808
Scheerlinck, C., Rebecq, H., Gehrig, D., Barnes, N., Mahony, R. E., & Scaramuzza, D. (2020). Fast image reconstruction with an event camera. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 156–163. https://doi.org/10.1109/WACV45572.2020.9093366
Schwartz, J., Kurniawati, H., & El-Mahassni, E. (2020). POMDP + Information-Decay: Incorporating Defender’s Behaviour in Autonomous Penetration Testing. In Proceedings of the International Conference on Automated Planning and Scheduling (Vol. 2020). Retrieved from www.aaai.org
Serna, J. G., Gonzalez, F., Vanegas, F., & Flannery, D. (2020). A Probabilistic based UAV Mission Planning and Navigation for Planetary Exploration. 2020 International Conference on Unmanned Aircraft Systems, ICUAS 2020, 594–599. https://doi.org/10.1109/ICUAS48674.2020.9213933
Shi, Y., Yu, X., Campbell, D., & Li, H. (2020). Where am I looking at? Joint location and orientation estimation by cross-view matching. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4063–4071. https://doi.org/10.1109/CVPR42600.2020.00412
Shoeiby, M., Armin, M. A., Aliakbarian, S., Anwar, S., & Petersson, L. (2020). Mosaic super-resolution via sequential feature pyramid networks. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 378–387. https://doi.org/10.1109/CVPRW50498.2020.00050
Shoeiby, M., Petersson, L., Armin, M. A., Aliakbarian, S., & Robles-Kelly, A. (2020). Super-resolved chromatic mapping of snapshot mosaic image sensors via a texture sensitive residual network. Proceedings – 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020, 2793–2802. https://doi.org/10.1109/WACV45572.2020.9093518
Silva, G. F., Donaire, A., McFadyen, A., & Ford, J. (2020). String Stable Integral Control of Vehicle Platoons with Actuator Dynamics and Disturbances. Proceedings of the IEEE Conference on Decision and Control, 2020-December, 2837–2842. https://doi.org/10.1109/CDC42340.2020.9303743
Song, X., Dai, Y., Zhou, D., Liu, L., Li, W., Li, H., & Yang, R. (2020). Channel Attention Based Iterative Residual Learning for Depth Map Super-Resolution. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 5630–5639. https://doi.org/10.1109/CVPR42600.2020.00567
Song Z., Chen W., Campbell D., Li H. (2020) Deep Novel View Synthesis from Colored 3D Point Clouds. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12369. Springer, Cham. https://doi.org/10.1007/978-3-030-58586-0_1
Song, Z., Lu, J., Zhang, T., & Li, H. (2020). End-to-end Learning for Inter-Vehicle Distance and Relative Velocity Estimation in ADAS with a Monocular Camera. Proceedings – IEEE International Conference on Robotics and Automation, 11081–11087. https://doi.org/10.1109/ICRA40945.2020.9197557
Song, Z., Zhu, H., Wu, Q., Wang, X., Li, H., & Wang, Q. (2020). Accurate 3D Reconstruction from Circular Light Field Using CNN-LSTM. Proceedings – IEEE International Conference on Multimedia and Expo, 2020-July. https://doi.org/10.1109/ICME46284.2020.9102847
Stoffregen T. et al. (2020) Reducing the Sim-to-Real Gap for Event Cameras. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_32
Sun, Y., Cheng, C., Zhang, Y., Zhang, C., Zheng, L., Wang, Z., & Wei, Y. (2020). Circle loss: A unified perspective of pair similarity optimization. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 6397–6406. https://doi.org/10.1109/CVPR42600.2020.00643
Van Goor, P., Hamel, T., & Mahony, R. (2020). Equivariant Filter (EqF): A General Filter Design for Systems on Homogeneous Spaces. Proceedings of the IEEE Conference on Decision and Control, 2020-December, 5401–5408. https://doi.org/10.1109/CDC42340.2020.9303813
Vankadari M., Garg S., Majumder A., Kumar S., Behera A. (2020) Unsupervised Monocular Depth Estimation for Night-Time Images Using Adversarial Domain Feature Adaptation. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12373. Springer, Cham. https://doi.org/10.1007/978-3-030-58604-1_27
Von Drigalski, F., Taniguchi, S., Lee, R., Matsubara, T., Hamaya, M., Tanaka, K., & Ijiri, Y. (2020). Contact-based in-hand pose estimation using Bayesian state estimation and particle filtering. Proceedings – IEEE International Conference on Robotics and Automation, 7294–7299. https://doi.org/10.1109/ICRA40945.2020.9196640
Wang, L., Manchester, I. R., Trumpf, J., & Shi, G. (2020). Initial-Value Privacy of Linear Dynamical Systems. Proceedings of the IEEE Conference on Decision and Control, 2020-December, 3108–3113. https://doi.org/10.1109/CDC42340.2020.9303900
Wang, Y., Huang, K., Peng, X., Li, H., & Kneip, L. (2020). Reliable frame-to-frame motion estimation for vehicle-mounted surround-view camera systems. Proceedings – IEEE International Conference on Robotics and Automation, 1660–1666. https://doi.org/10.1109/ICRA40945.2020.9197176
Wang Z. et al. (2020) CycAs: Self-supervised Cycle Association for Learning Re-identifiable Descriptions. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_5
Wang Z., Zheng L., Liu Y., Li Y., Wang S. (2020) Towards Real-Time Multi-Object Tracking. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_7
Wilde, N., Kulic, D., & Smith, S. L. (2020). Learning User Preferences from Corrections on State Lattices. Proceedings – IEEE International Conference on Robotics and Automation, 4913–4919. https://doi.org/10.1109/ICRA40945.2020.9197040
Wolfert, P., Deschuyteneer, J., Oetringer, D., Robinson, N., & Belpaeme, T. (2020). Security risks of social robots used to persuade and manipulate: A proof of concept study. ACM/IEEE International Conference on Human-Robot Interaction, 523–525. https://doi.org/10.1145/3371382.3378341
Yang, J., Mao, W., Alvarez, J. M., & Liu, M. (2020). Cost volume pyramid based depth inference for multi-view stereo. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4876–4885. https://doi.org/10.1109/CVPR42600.2020.00493
Yang, Y. J., Udatha, S., Kulić, D., & Abdi, E. (2020). A novel foot interface versus voice for controlling a robotic endoscope holder. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2020-November, 272–279. https://doi.org/10.1109/BioRob49111.2020.9224440
Yu, C., Wang, J., Gao, C., Yu, G., Shen, C., & Sang, N. (2020). Context prior for scene segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12413–12422. https://doi.org/10.1109/CVPR42600.2020.01243
Zhang, C., Cai, Y., Lin, G., & Shen, C. (2020). DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12200–12210. https://doi.org/10.1109/CVPR42600.2020.01222
Zhang H., Zhang L., Qi X., Li H., Torr P.H.S., Koniusz P. (2020) Few-Shot Action Recognition with Permutation-Invariant Attention. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_31
Zhang, J., Fan, D. P., Dai, Y., Anwar, S., Saleh, F. S., Zhang, T., & Barnes, N. (2020). UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8579–8588. https://doi.org/10.1109/CVPR42600.2020.0086
Zhang, J., Yu, X., Li, A., Song, P., Liu, B., & Dai, Y. (2020). Weakly-Supervised Salient Object Detection via Scribble Annotations. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12543–12552. https://doi.org/10.1109/CVPR42600.2020.01256
Zhang, K., Luo, W., Stenger, B., Ren, W., Ma, L., & Li, H. (2020). Every Moment Matters: Detail-Aware Networks to Bring a Blurry Image Alive. Proceedings of the 28th ACM International Conference on Multimedia, 20, 384–392. https://doi.org/10.1145/3394171.3413929
Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. (2020). Deblurring by Realistic Blurring. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2734–2743. https://doi.org/10.1109/CVPR42600.2020.00281
Zhang, R., Tian, Z., Shen, C., You, M., & Yan, Y. (2020). Mask Encoding for Single Shot Instance Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 10223–10232. https://doi.org/10.1109/CVPR42600.2020.01024
Zhang, Y., Tsang, I. W., Luo, Y., Hu, C. H., Lu, X., & Yu, X. (2020). Copy and Paste GAN: Face Hallucination from Shaded Thumbnails. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 7353–7362. https://doi.org/10.1109/CVPR42600.2020.00738
Zhang, Z., Su, C., Zheng, L., & Xie, X. (2020). Correlating edge, pose with parsing. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8897–8906. https://doi.org/10.1109/CVPR42600.2020.00892
Zhou, D., Fang, J., Song, X., Liu, L., Yin, J., Dai, Y., Li, H., & Yang, R. (2020). Joint 3D instance segmentation and object detection for autonomous driving. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1836–1846. https://doi.org/10.1109/CVPR42600.2020.00191
Zhu, X., Vanegas, F., & Gonzalez, F. (2020). An Approach for Multi-UAV System Navigation and Target Finding in Cluttered Environments. 2020 International Conference on Unmanned Aircraft Systems, ICUAS 2020, 1113–1120. https://doi.org/10.1109/ICUAS48674.2020.9214062
Zhuang, B., Liu, L., Tan, M., Shen, C., & Reid, I. (2020). Training quantized neural networks with a full-precision auxiliary module. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1485–1494. https://doi.org/10.1109/CVPR42600.2020.00156
Zhuang, Z., Yu, X., & Mahony, R. (2020). LyRN (Lyapunov Reaching Network): A Real-Time Closed Loop approach from Monocular Vision. Proceedings – IEEE International Conference on Robotics and Automation, 8331–8337. https://doi.org/10.1109/ICRA40945.2020.9196781
Feature image photo credit: Viorika, E+, Getty Images